Exponentiability in categories of lax algebras
Theory and applications of categories, Tome 11 (2003), pp. 337-352.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

For a complete cartesian-closed category V with coproducts, and for any pointed endofunctor T of the category of sets satisfying a suitable Beck-Chevalley-type condition, it is shown that the category of lax reflexive (T,V)-algebras is a quasitopos. This result encompasses many known and new examples of quasitopoi.
Classification : 18C20, 18D15, 18A05, 18B30, 18B35
Keywords: lax algebra, partial product, locally cartesian-closed category, quasitopos
@article{TAC_2003_11_a14,
     author = {Maria Manuel Clementino and Dirk Hofmann and Walter Tholen},
     title = {Exponentiability in categories of lax algebras},
     journal = {Theory and applications of categories},
     pages = {337--352},
     publisher = {mathdoc},
     volume = {11},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2003_11_a14/}
}
TY  - JOUR
AU  - Maria Manuel Clementino
AU  - Dirk Hofmann
AU  - Walter Tholen
TI  - Exponentiability in categories of lax algebras
JO  - Theory and applications of categories
PY  - 2003
SP  - 337
EP  - 352
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2003_11_a14/
LA  - en
ID  - TAC_2003_11_a14
ER  - 
%0 Journal Article
%A Maria Manuel Clementino
%A Dirk Hofmann
%A Walter Tholen
%T Exponentiability in categories of lax algebras
%J Theory and applications of categories
%D 2003
%P 337-352
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2003_11_a14/
%G en
%F TAC_2003_11_a14
Maria Manuel Clementino; Dirk Hofmann; Walter Tholen. Exponentiability in categories of lax algebras. Theory and applications of categories, Tome 11 (2003), pp. 337-352. http://geodesic.mathdoc.fr/item/TAC_2003_11_a14/