Exponentiability in categories of lax algebras
Theory and applications of categories, Tome 11 (2003), pp. 337-352
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
For a complete cartesian-closed category V with coproducts, and for any pointed endofunctor T of the category of sets satisfying a suitable Beck-Chevalley-type condition, it is shown that the category of lax reflexive (T,V)-algebras is a quasitopos. This result encompasses many known and new examples of quasitopoi.
Classification :
18C20, 18D15, 18A05, 18B30, 18B35
Keywords: lax algebra, partial product, locally cartesian-closed category, quasitopos
Keywords: lax algebra, partial product, locally cartesian-closed category, quasitopos
@article{TAC_2003_11_a14,
author = {Maria Manuel Clementino and Dirk Hofmann and Walter Tholen},
title = {Exponentiability in categories of lax algebras},
journal = {Theory and applications of categories},
pages = {337--352},
year = {2003},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2003_11_a14/}
}
Maria Manuel Clementino; Dirk Hofmann; Walter Tholen. Exponentiability in categories of lax algebras. Theory and applications of categories, Tome 11 (2003), pp. 337-352. http://geodesic.mathdoc.fr/item/TAC_2003_11_a14/