Categorical models and quasigroup homotopies
Theory and applications of categories, Tome 11 (2003), pp. 1-14.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In many applications of quasigroups isotopies and homotopies are more important than isomorphisms and homomorphisms. In this paper, the way homotopies may arise in the context of categorical quasigroup model theory is investigated. In this context, the algebraic structures are specified by diagram-based logics, such as sketches, and categories of models become functor categories. An idea, pioneered by Gvaramiya and Plotkin, is used to give a construction of a model category naturally equivalent to the category of quasigroups with homotopies between them.
Classification : 20N05, 18B99, 18A10
Keywords: sketches, finite product sketches, sketch models, quasigroups, homotopies.
@article{TAC_2003_11_a0,
     author = {George Voutsadakis},
     title = {Categorical models and quasigroup homotopies},
     journal = {Theory and applications of categories},
     pages = {1--14},
     publisher = {mathdoc},
     volume = {11},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2003_11_a0/}
}
TY  - JOUR
AU  - George Voutsadakis
TI  - Categorical models and quasigroup homotopies
JO  - Theory and applications of categories
PY  - 2003
SP  - 1
EP  - 14
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2003_11_a0/
LA  - en
ID  - TAC_2003_11_a0
ER  - 
%0 Journal Article
%A George Voutsadakis
%T Categorical models and quasigroup homotopies
%J Theory and applications of categories
%D 2003
%P 1-14
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2003_11_a0/
%G en
%F TAC_2003_11_a0
George Voutsadakis. Categorical models and quasigroup homotopies. Theory and applications of categories, Tome 11 (2003), pp. 1-14. http://geodesic.mathdoc.fr/item/TAC_2003_11_a0/