Exponentiability of perfect maps: four approaches
Theory and applications of categories, Tome 10 (2002), pp. 127-133.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Two proofs of the exponentiability of perfect maps are presented and compared to two other recent approaches. One of the proofs is an elementaryapproach including a direct construction of the exponentials. The other, implicit in the literature, uses internal locales in the topos of set-valued sheaves on a topological space.
Classification : 54C35, 54C10, 18B30, 18D15.
Keywords: exponentiable, perfect, proper, separated, function space.
@article{TAC_2002_10_a4,
     author = {Susan Niefield},
     title = {Exponentiability of perfect maps: four approaches},
     journal = {Theory and applications of categories},
     pages = {127--133},
     publisher = {mathdoc},
     volume = {10},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2002_10_a4/}
}
TY  - JOUR
AU  - Susan Niefield
TI  - Exponentiability of perfect maps: four approaches
JO  - Theory and applications of categories
PY  - 2002
SP  - 127
EP  - 133
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2002_10_a4/
LA  - en
ID  - TAC_2002_10_a4
ER  - 
%0 Journal Article
%A Susan Niefield
%T Exponentiability of perfect maps: four approaches
%J Theory and applications of categories
%D 2002
%P 127-133
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2002_10_a4/
%G en
%F TAC_2002_10_a4
Susan Niefield. Exponentiability of perfect maps: four approaches. Theory and applications of categories, Tome 10 (2002), pp. 127-133. http://geodesic.mathdoc.fr/item/TAC_2002_10_a4/