A duality relative to a limit doctrine
Theory and applications of categories, Tome 10 (2002), pp. 486-497.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We give a unified proof of Gabriel-Ulmer duality for locally finitely presentable categories, Adamek-Lawvere-Rosicky duality for varieties and Morita duality for presheaf categories. As an application, we compare presheaf categories and varieties.
Classification : 18C10, 18C35, 18A25, 18A30, 18A35.
Keywords: limit doctrines, locally D-presentable categories, duality.
@article{TAC_2002_10_a19,
     author = {C. Centazzo and E.M. Vitale},
     title = {A duality relative to a limit doctrine},
     journal = {Theory and applications of categories},
     pages = {486--497},
     publisher = {mathdoc},
     volume = {10},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2002_10_a19/}
}
TY  - JOUR
AU  - C. Centazzo
AU  - E.M. Vitale
TI  - A duality relative to a limit doctrine
JO  - Theory and applications of categories
PY  - 2002
SP  - 486
EP  - 497
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2002_10_a19/
LA  - en
ID  - TAC_2002_10_a19
ER  - 
%0 Journal Article
%A C. Centazzo
%A E.M. Vitale
%T A duality relative to a limit doctrine
%J Theory and applications of categories
%D 2002
%P 486-497
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2002_10_a19/
%G en
%F TAC_2002_10_a19
C. Centazzo; E.M. Vitale. A duality relative to a limit doctrine. Theory and applications of categories, Tome 10 (2002), pp. 486-497. http://geodesic.mathdoc.fr/item/TAC_2002_10_a19/