Opmonoidal monads
Theory and applications of categories, Tome 10 (2002), pp. 469-485
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
Hopf monads are identified with monads in the 2-category Opmon of monoidal categories, opmonoidal functors and transformations. Using Eilenberg-Moore objects, it is shown that for a Hopf monad $S$, the categories Alg(Coalg($S$)) and Coalg(Alg($S$)) are canonically isomorphic. The monadic arrows Opmon are then characterized. Finally, the theory of multicategories and a generalization of structure and semantics are used to identify the categories of algebras of Hopf monads.
Classification :
18D10, 18D25, 18D05.
Keywords: Hopf Monad, Eilenberg Moore Algebras, Multicategories, Structure and Semantics.
Keywords: Hopf Monad, Eilenberg Moore Algebras, Multicategories, Structure and Semantics.
@article{TAC_2002_10_a18,
author = {Paddy McCrudden},
title = {Opmonoidal monads},
journal = {Theory and applications of categories},
pages = {469--485},
year = {2002},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2002_10_a18/}
}
Paddy McCrudden. Opmonoidal monads. Theory and applications of categories, Tome 10 (2002), pp. 469-485. http://geodesic.mathdoc.fr/item/TAC_2002_10_a18/