Voir la notice de l'article provenant de la source Theory and Applications of Categories website
Hopf monads are identified with monads in the 2-category Opmon of monoidal categories, opmonoidal functors and transformations. Using Eilenberg-Moore objects, it is shown that for a Hopf monad $S$, the categories Alg(Coalg($S$)) and Coalg(Alg($S$)) are canonically isomorphic. The monadic arrows Opmon are then characterized. Finally, the theory of multicategories and a generalization of structure and semantics are used to identify the categories of algebras of Hopf monads.
@article{TAC_2002_10_a18, author = {Paddy McCrudden}, title = {Opmonoidal monads}, journal = {Theory and applications of categories}, pages = {469--485}, publisher = {mathdoc}, volume = {10}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2002_10_a18/} }
Paddy McCrudden. Opmonoidal monads. Theory and applications of categories, Tome 10 (2002), pp. 469-485. http://geodesic.mathdoc.fr/item/TAC_2002_10_a18/