HSP subcategories of Eilenberg-Moore algebras
Theory and applications of categories, Tome 10 (2002), pp. 461-468
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
Given a triple T on a complete category C and a factorization system E/M on the category of algebras, we show there is a 1-1 correspondence between full subcategories of the category of algebras that are closed under U-split epimorphisms, products, and M-subobjects and triple morphisms T -> S for which the induced natural transformation between free functors belongs to E.
Classification :
18C05, 18A20, 18A40.
Keywords: Birkhoff subcategories, factorizations, reflective subcategories.
Keywords: Birkhoff subcategories, factorizations, reflective subcategories.
@article{TAC_2002_10_a17,
author = {Michael Barr},
title = {HSP subcategories of {Eilenberg-Moore} algebras},
journal = {Theory and applications of categories},
pages = {461--468},
year = {2002},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2002_10_a17/}
}
Michael Barr. HSP subcategories of Eilenberg-Moore algebras. Theory and applications of categories, Tome 10 (2002), pp. 461-468. http://geodesic.mathdoc.fr/item/TAC_2002_10_a17/