The cyclic spectrum of a Boolean flow
Theory and applications of categories, Tome 10 (2002), pp. 392-409.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

This paper defines flows (or discrete dynamical systems) and cyclic flows in a category and investigates how the trajectories of a point might approach a cycle. The paper considers cyclic flows in the categories of Sets and of Boolean algebras and their duals and characterizes the Stone representation of a cyclic flow in Boolean algebras. A cyclic spectrum is constructed for Boolean flows. Examples include attractive fixpoints, repulsive fixpoints, strange attractors and the logistic equation.
Classification : 18B25, 37B99.
Keywords: flow, discrete dynamical system, topos, Cole spectrum, strange attractor.
@article{TAC_2002_10_a14,
     author = {John F. Kennison},
     title = {The cyclic spectrum of a {Boolean} flow},
     journal = {Theory and applications of categories},
     pages = {392--409},
     publisher = {mathdoc},
     volume = {10},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2002_10_a14/}
}
TY  - JOUR
AU  - John F. Kennison
TI  - The cyclic spectrum of a Boolean flow
JO  - Theory and applications of categories
PY  - 2002
SP  - 392
EP  - 409
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2002_10_a14/
LA  - en
ID  - TAC_2002_10_a14
ER  - 
%0 Journal Article
%A John F. Kennison
%T The cyclic spectrum of a Boolean flow
%J Theory and applications of categories
%D 2002
%P 392-409
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2002_10_a14/
%G en
%F TAC_2002_10_a14
John F. Kennison. The cyclic spectrum of a Boolean flow. Theory and applications of categories, Tome 10 (2002), pp. 392-409. http://geodesic.mathdoc.fr/item/TAC_2002_10_a14/