We associate to a Hausdorff space, $ X $, a double groupoid, $ \mbox{\boldmath $ \rho $}^{\square}_{2} (X) $, the homotopy double groupoid of $ X $. The construction is based on the geometric notion of thin square. Under the equivalence of categories between small $ 2 $-categories and double categories with connection the homotopy double groupoid corresponds to the homotopy 2- groupoid, $ {\bf G}_{2} (X) $. The cubical nature of $ \mbox{\boldmath $ \rho $}^{\square}_{2} (X) $ as opposed to the globular nature of $ {\bf G}_{2} (X) $ should provide a convenient tool when handling `local-to-global' problems as encountered in a generalised van Kampen theorem and dealing with tensor products and enrichments of the category of compactly generated Hausdorff spaces.
Keywords: double groupoid, connection, thin structure, 2-groupoid, double track, 2- track, thin square, homotopy addition lemma.
@article{TAC_2002_10_a1,
author = {Ronald Brown and Keith A. Hardie and Klaus Heiner Kamps and Timothy Porter},
title = {A homotopy double groupoid of a {Hausdorff} space},
journal = {Theory and applications of categories},
pages = {71--93},
year = {2002},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2002_10_a1/}
}
TY - JOUR AU - Ronald Brown AU - Keith A. Hardie AU - Klaus Heiner Kamps AU - Timothy Porter TI - A homotopy double groupoid of a Hausdorff space JO - Theory and applications of categories PY - 2002 SP - 71 EP - 93 VL - 10 UR - http://geodesic.mathdoc.fr/item/TAC_2002_10_a1/ LA - en ID - TAC_2002_10_a1 ER -
Ronald Brown; Keith A. Hardie; Klaus Heiner Kamps; Timothy Porter. A homotopy double groupoid of a Hausdorff space. Theory and applications of categories, Tome 10 (2002), pp. 71-93. http://geodesic.mathdoc.fr/item/TAC_2002_10_a1/