Localization of V-categories
Theory and applications of categories, Tome 8 (2001), pp. 284-312.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Let $V$ be a symmetric monoidal closed category with a suitably compatible simplicial model category structure. We show how to extend Dwyer and Kan's notion of simplicial localization to $V$-categories. This may for instance be applied to the case where our categories are enriched in suitable models for spectra.
Classification : 18D20, 18G55.
Keywords:
@article{TAC_2001_8_a9,
     author = {Bjorn Ian Dundas},
     title = {Localization of {V-categories}},
     journal = {Theory and applications of categories},
     pages = {284--312},
     publisher = {mathdoc},
     volume = {8},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2001_8_a9/}
}
TY  - JOUR
AU  - Bjorn Ian Dundas
TI  - Localization of V-categories
JO  - Theory and applications of categories
PY  - 2001
SP  - 284
EP  - 312
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2001_8_a9/
LA  - en
ID  - TAC_2001_8_a9
ER  - 
%0 Journal Article
%A Bjorn Ian Dundas
%T Localization of V-categories
%J Theory and applications of categories
%D 2001
%P 284-312
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2001_8_a9/
%G en
%F TAC_2001_8_a9
Bjorn Ian Dundas. Localization of V-categories. Theory and applications of categories, Tome 8 (2001), pp. 284-312. http://geodesic.mathdoc.fr/item/TAC_2001_8_a9/