A categorical genealogy for the congruence distributive property
Theory and applications of categories, Tome 8 (2001), pp. 391-407.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In the context of Mal'cev categories, a left exact root for the congruence distributive property is given and investigated, namely the property that there is no non trivial internal group inside the fibres of the fibration of pointed objects. Indeed, when moreover the basic category $\mathbb{C}$ is Barr exact, the two previous properties are shown to be equivalent.
Classification : 18C99, 08B10, 18D30, 08B05.
Keywords: congruence distributivity, Mal�cev, arithmetical and protomodular categories.
@article{TAC_2001_8_a13,
     author = {Dominique Bourn},
     title = {A categorical genealogy for the congruence distributive property},
     journal = {Theory and applications of categories},
     pages = {391--407},
     publisher = {mathdoc},
     volume = {8},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2001_8_a13/}
}
TY  - JOUR
AU  - Dominique Bourn
TI  - A categorical genealogy for the congruence distributive property
JO  - Theory and applications of categories
PY  - 2001
SP  - 391
EP  - 407
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2001_8_a13/
LA  - en
ID  - TAC_2001_8_a13
ER  - 
%0 Journal Article
%A Dominique Bourn
%T A categorical genealogy for the congruence distributive property
%J Theory and applications of categories
%D 2001
%P 391-407
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2001_8_a13/
%G en
%F TAC_2001_8_a13
Dominique Bourn. A categorical genealogy for the congruence distributive property. Theory and applications of categories, Tome 8 (2001), pp. 391-407. http://geodesic.mathdoc.fr/item/TAC_2001_8_a13/