${\cal M}$-Completeness is seldom monadic over graphs
Theory and applications of categories, Tome 7 (2000), pp. 171-205.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

For a set ${\cal M}$ of graphs the category ${\bf Cat}_{\cal M}$ of all ${\cal M}$-complete categories and all strictly ${\cal M}$-continuous functors is known to be monadic over ${\bf Cat}$. The question of monadicity of ${\bf Cat}_{\cal M}$ over the category of graphs is known to have an affirmative answer when ${\cal M}$ specifies either (i) all finite limits, or (ii) all finite products, or (iii) equalizers and terminal objects, or (iv) just terminal objects. We prove that, conversely, these four cases are (essentially) the only cases of monadicity of $\Cat_\M$ over the category of graphs, provided that ${\cal M}$ is a set of finite graphs containing the empty graph.
Classification : 18A35, 18A10, 18C15.
Keywords: category, graph, limit, adjunction.
@article{TAC_2000_7_a7,
     author = {Jiri Adamek and G. M. Kelly},
     title = {${\cal M}${-Completeness} is seldom monadic over graphs},
     journal = {Theory and applications of categories},
     pages = {171--205},
     publisher = {mathdoc},
     volume = {7},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2000_7_a7/}
}
TY  - JOUR
AU  - Jiri Adamek
AU  - G. M. Kelly
TI  - ${\cal M}$-Completeness is seldom monadic over graphs
JO  - Theory and applications of categories
PY  - 2000
SP  - 171
EP  - 205
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2000_7_a7/
LA  - en
ID  - TAC_2000_7_a7
ER  - 
%0 Journal Article
%A Jiri Adamek
%A G. M. Kelly
%T ${\cal M}$-Completeness is seldom monadic over graphs
%J Theory and applications of categories
%D 2000
%P 171-205
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2000_7_a7/
%G en
%F TAC_2000_7_a7
Jiri Adamek; G. M. Kelly. ${\cal M}$-Completeness is seldom monadic over graphs. Theory and applications of categories, Tome 7 (2000), pp. 171-205. http://geodesic.mathdoc.fr/item/TAC_2000_7_a7/