Pure morphisms of commutative rings are effective descent morphisms for modules -- a new proof
Theory and applications of categories, Tome 7 (2000), pp. 38-42.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

The purpose of this paper is to give a new proof of the Joyal-Tierney theorem (unpublished), which asserts that a morphism $f:R\rightarrow S$ of commutative rings is an effective descent morphism for modules if and only if $f$ is pure as a morphism of $R$-modules.
Classification : 13C99, 18A20, 18A30, 18A40.
Keywords: Pure morphisms, (effective) Descent morphisms, Split coequalizers.
@article{TAC_2000_7_a2,
     author = {Bachuki Mesablishvili},
     title = {Pure morphisms of commutative rings are  effective descent morphisms for
modules -- a new proof},
     journal = {Theory and applications of categories},
     pages = {38--42},
     publisher = {mathdoc},
     volume = {7},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2000_7_a2/}
}
TY  - JOUR
AU  - Bachuki Mesablishvili
TI  - Pure morphisms of commutative rings are  effective descent morphisms for
modules -- a new proof
JO  - Theory and applications of categories
PY  - 2000
SP  - 38
EP  - 42
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2000_7_a2/
LA  - en
ID  - TAC_2000_7_a2
ER  - 
%0 Journal Article
%A Bachuki Mesablishvili
%T Pure morphisms of commutative rings are  effective descent morphisms for
modules -- a new proof
%J Theory and applications of categories
%D 2000
%P 38-42
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2000_7_a2/
%G en
%F TAC_2000_7_a2
Bachuki Mesablishvili. Pure morphisms of commutative rings are  effective descent morphisms for
modules -- a new proof. Theory and applications of categories, Tome 7 (2000), pp. 38-42. http://geodesic.mathdoc.fr/item/TAC_2000_7_a2/