A simplicial description of the homotopy category of simplicial groupoids
Theory and applications of categories, Tome 7 (2000), pp. 263-283
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
In this paper we use Quillen's model structure given by Dwyer-Kan for the category of simplicial groupoids (with discrete object of objects) to describe in this category, in the simplicial language, the fundamental homotopy theoretical constructions of path and cylinder objects. We then characterize the associated left and right homotopy relations in terms of simplicial identities and give a simplicial description of the homotopy category of simplicial groupoids. Finally, we show loop and suspension functors in the pointed case.
Classification :
18G30, 55U35.
Keywords: closed model category, path object, cylinder object, homotopy relation.
Keywords: closed model category, path object, cylinder object, homotopy relation.
@article{TAC_2000_7_a13,
author = {A. R. Garzon and J. G. Miranda and R. Osorio},
title = {A simplicial description of the homotopy category of simplicial groupoids},
journal = {Theory and applications of categories},
pages = {263--283},
year = {2000},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2000_7_a13/}
}
TY - JOUR AU - A. R. Garzon AU - J. G. Miranda AU - R. Osorio TI - A simplicial description of the homotopy category of simplicial groupoids JO - Theory and applications of categories PY - 2000 SP - 263 EP - 283 VL - 7 UR - http://geodesic.mathdoc.fr/item/TAC_2000_7_a13/ LA - en ID - TAC_2000_7_a13 ER -
A. R. Garzon; J. G. Miranda; R. Osorio. A simplicial description of the homotopy category of simplicial groupoids. Theory and applications of categories, Tome 7 (2000), pp. 263-283. http://geodesic.mathdoc.fr/item/TAC_2000_7_a13/