A simplicial description of the homotopy category of simplicial groupoids
Theory and applications of categories, Tome 7 (2000), pp. 263-283.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In this paper we use Quillen's model structure given by Dwyer-Kan for the category of simplicial groupoids (with discrete object of objects) to describe in this category, in the simplicial language, the fundamental homotopy theoretical constructions of path and cylinder objects. We then characterize the associated left and right homotopy relations in terms of simplicial identities and give a simplicial description of the homotopy category of simplicial groupoids. Finally, we show loop and suspension functors in the pointed case.
Classification : 18G30, 55U35.
Keywords: closed model category, path object, cylinder object, homotopy relation.
@article{TAC_2000_7_a13,
     author = {A. R. Garzon and J. G. Miranda and R. Osorio},
     title = {A simplicial description of the homotopy category of simplicial groupoids},
     journal = {Theory and applications of categories},
     pages = {263--283},
     publisher = {mathdoc},
     volume = {7},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2000_7_a13/}
}
TY  - JOUR
AU  - A. R. Garzon
AU  - J. G. Miranda
AU  - R. Osorio
TI  - A simplicial description of the homotopy category of simplicial groupoids
JO  - Theory and applications of categories
PY  - 2000
SP  - 263
EP  - 283
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2000_7_a13/
LA  - en
ID  - TAC_2000_7_a13
ER  - 
%0 Journal Article
%A A. R. Garzon
%A J. G. Miranda
%A R. Osorio
%T A simplicial description of the homotopy category of simplicial groupoids
%J Theory and applications of categories
%D 2000
%P 263-283
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2000_7_a13/
%G en
%F TAC_2000_7_a13
A. R. Garzon; J. G. Miranda; R. Osorio. A simplicial description of the homotopy category of simplicial groupoids. Theory and applications of categories, Tome 7 (2000), pp. 263-283. http://geodesic.mathdoc.fr/item/TAC_2000_7_a13/