Generalized congruences -- Epimorphisms in Cat
Theory and applications of categories, Tome 5 (1999), pp. 266-280
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
The paper generalizes the notion of a congruence on a category and pursues some of its applications. In particular, generalized congruences are used to provide a concrete construction of coequalizers in ${\cal C}at$. Extremal, regular and various other classes of epimorphic functors are characterized and inter-related.
Classification :
18A05, 18A20, 18A30, 18A32, 18B99.
Keywords: congruence, epimorphic functor, coequalizer, category of small categories.
Keywords: congruence, epimorphic functor, coequalizer, category of small categories.
@article{TAC_1999_5_a10,
author = {Marek A. Bednarczyk and Andrzej M. Borzyszkowski and Wieslaw Pawlowski},
title = {Generalized congruences -- {Epimorphisms} in {Cat}},
journal = {Theory and applications of categories},
pages = {266--280},
year = {1999},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_1999_5_a10/}
}
TY - JOUR AU - Marek A. Bednarczyk AU - Andrzej M. Borzyszkowski AU - Wieslaw Pawlowski TI - Generalized congruences -- Epimorphisms in Cat JO - Theory and applications of categories PY - 1999 SP - 266 EP - 280 VL - 5 UR - http://geodesic.mathdoc.fr/item/TAC_1999_5_a10/ LA - en ID - TAC_1999_5_a10 ER -
Marek A. Bednarczyk; Andrzej M. Borzyszkowski; Wieslaw Pawlowski. Generalized congruences -- Epimorphisms in Cat. Theory and applications of categories, Tome 5 (1999), pp. 266-280. http://geodesic.mathdoc.fr/item/TAC_1999_5_a10/