Geometric Construction of the Levi-Civita Parallelism
Theory and applications of categories, Tome 4 (1998), pp. 195-207.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In terms of synthetic differential geometry, we give a variational characterization of the connection (parallelism) associated to a pseudo-Riemannian metric on a manifold.
Classification : 18F99, 53B20, 58A03.
Keywords: quadratic differential form, affine connection, synthetic differential geometry.
@article{TAC_1998_4_a8,
     author = {Anders Kock},
     title = {Geometric {Construction} of the {Levi-Civita} {Parallelism}},
     journal = {Theory and applications of categories},
     pages = {195--207},
     publisher = {mathdoc},
     volume = {4},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_1998_4_a8/}
}
TY  - JOUR
AU  - Anders Kock
TI  - Geometric Construction of the Levi-Civita Parallelism
JO  - Theory and applications of categories
PY  - 1998
SP  - 195
EP  - 207
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_1998_4_a8/
LA  - en
ID  - TAC_1998_4_a8
ER  - 
%0 Journal Article
%A Anders Kock
%T Geometric Construction of the Levi-Civita Parallelism
%J Theory and applications of categories
%D 1998
%P 195-207
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_1998_4_a8/
%G en
%F TAC_1998_4_a8
Anders Kock. Geometric Construction of the Levi-Civita Parallelism. Theory and applications of categories, Tome 4 (1998), pp. 195-207. http://geodesic.mathdoc.fr/item/TAC_1998_4_a8/