Applications of Peiffer pairings in the Moore complex of a simplicial group
Theory and applications of categories, Tome 4 (1998), pp. .148-173
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
Generalising a result of Brown and Loday, we give for n=3 and 4, a decomposition of the group, d_nNG_n, of boundaries of a simplicial group G as a product of commutator subgroups. Partial results are given for higher dimensions. Applications to 2-crossed modules and quadratic modules are discussed.
Please note the electronically available References at http://www.tac.mta.ca/tac/volumes/1998/n7/reference.html
Classification :
18G30, 55U10, 55P10.
Keywords: Simplicial groups, Brown-Loday lemma, Peiffer elements, 2-crossed modules.
Keywords: Simplicial groups, Brown-Loday lemma, Peiffer elements, 2-crossed modules.
@article{TAC_1998_4_a6,
author = {A. Mutlu and T. Porter},
title = {Applications of {Peiffer} pairings in the {Moore} complex of a simplicial group},
journal = {Theory and applications of categories},
pages = {.148--173},
year = {1998},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_1998_4_a6/}
}
A. Mutlu; T. Porter. Applications of Peiffer pairings in the Moore complex of a simplicial group. Theory and applications of categories, Tome 4 (1998), pp. .148-173. http://geodesic.mathdoc.fr/item/TAC_1998_4_a6/