Higher Dimensional Peiffer Elements in Simplicial Commutative Algebras
Theory and applications of categories, Tome 3 (1997), pp. 1-23
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
Let E be a simplicial commutative algebra such that E_n is generated by degenerate elements. It is shown that in this case the n^th term of the Moore complex of E is generated by images of certain pairings from lower dimensions. This is then used to give a description of the boundaries in dimension n-1 for n = 2, 3, and 4.
Classification :
18G30, 18G55, 16E99 .
Keywords: Simplicial commutative algebra, boundaries, Moore complex .
Keywords: Simplicial commutative algebra, boundaries, Moore complex .
@article{TAC_1997_3_a0,
author = {Z. Arvasi and T. Porter},
title = {Higher {Dimensional} {Peiffer} {Elements} in {Simplicial} {Commutative} {Algebras}},
journal = {Theory and applications of categories},
pages = {1--23},
year = {1997},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_1997_3_a0/}
}
Z. Arvasi; T. Porter. Higher Dimensional Peiffer Elements in Simplicial Commutative Algebras. Theory and applications of categories, Tome 3 (1997), pp. 1-23. http://geodesic.mathdoc.fr/item/TAC_1997_3_a0/