Higher Dimensional Peiffer Elements in Simplicial Commutative Algebras
Theory and applications of categories, Tome 3 (1997), pp. 1-23.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Let E be a simplicial commutative algebra such that E_n is generated by degenerate elements. It is shown that in this case the n^th term of the Moore complex of E is generated by images of certain pairings from lower dimensions. This is then used to give a description of the boundaries in dimension n-1 for n = 2, 3, and 4.
Classification : 18G30, 18G55, 16E99 .
Keywords: Simplicial commutative algebra, boundaries, Moore complex .
@article{TAC_1997_3_a0,
     author = {Z. Arvasi and T. Porter},
     title = {Higher {Dimensional} {Peiffer} {Elements} in {Simplicial} {Commutative} {Algebras}},
     journal = {Theory and applications of categories},
     pages = {1--23},
     publisher = {mathdoc},
     volume = {3},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_1997_3_a0/}
}
TY  - JOUR
AU  - Z. Arvasi
AU  - T. Porter
TI  - Higher Dimensional Peiffer Elements in Simplicial Commutative Algebras
JO  - Theory and applications of categories
PY  - 1997
SP  - 1
EP  - 23
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_1997_3_a0/
LA  - en
ID  - TAC_1997_3_a0
ER  - 
%0 Journal Article
%A Z. Arvasi
%A T. Porter
%T Higher Dimensional Peiffer Elements in Simplicial Commutative Algebras
%J Theory and applications of categories
%D 1997
%P 1-23
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_1997_3_a0/
%G en
%F TAC_1997_3_a0
Z. Arvasi; T. Porter. Higher Dimensional Peiffer Elements in Simplicial Commutative Algebras. Theory and applications of categories, Tome 3 (1997), pp. 1-23. http://geodesic.mathdoc.fr/item/TAC_1997_3_a0/