An algebraic description of locally multipresentable categories
Theory and applications of categories, Tome 2 (1996), pp. 40-53

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Locally finitely presentable categories are known to be precisely the categories of models of essentially algebraic theories, i.e., categories of partial algebras whose domains of definition are determined by equations in total operations. Here we show an analogous description of locally finitely multipresentable categories. We also prove that locally finitely multipresentable categories are precisely categories of models of sketches with finite limit and countable coproduct specifications, and we present an example of a locally finitely multipresentable category not sketchable by a sketch with finite limit and finite colimit specifications.

Classification : 18C99.
Keywords: locally multipresentable category, sketch.
@article{TAC_1996_2_a3,
     author = {Jiri Adamek and Jiri Rosicky},
     title = {An algebraic description of locally multipresentable categories},
     journal = {Theory and applications of categories},
     pages = {40--53},
     publisher = {mathdoc},
     volume = {2},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_1996_2_a3/}
}
TY  - JOUR
AU  - Jiri Adamek
AU  - Jiri Rosicky
TI  - An algebraic description of locally multipresentable categories
JO  - Theory and applications of categories
PY  - 1996
SP  - 40
EP  - 53
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_1996_2_a3/
LA  - en
ID  - TAC_1996_2_a3
ER  - 
%0 Journal Article
%A Jiri Adamek
%A Jiri Rosicky
%T An algebraic description of locally multipresentable categories
%J Theory and applications of categories
%D 1996
%P 40-53
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_1996_2_a3/
%G en
%F TAC_1996_2_a3
Jiri Adamek; Jiri Rosicky. An algebraic description of locally multipresentable categories. Theory and applications of categories, Tome 2 (1996), pp. 40-53. http://geodesic.mathdoc.fr/item/TAC_1996_2_a3/