The Chu construction
Theory and applications of categories, Tome 2 (1996), pp. 17-35

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We take another look at the Chu construction and show how to simplify it by looking at it as a module category in a trivial Chu category. This simplifies the construction substantially, especially in the case of a non-symmetric biclosed monoidal category. We also show that if the original category is accessible, then for any of a large class of ``polynomial-like'' functors, the category of coalgebras has cofree objects.

Classification : 18D15.
Keywords: Chu category, bimodules, cofree coalgebras.
@article{TAC_1996_2_a1,
     author = {Michael Barr},
     title = {The {Chu} construction},
     journal = {Theory and applications of categories},
     pages = {17--35},
     publisher = {mathdoc},
     volume = {2},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_1996_2_a1/}
}
TY  - JOUR
AU  - Michael Barr
TI  - The Chu construction
JO  - Theory and applications of categories
PY  - 1996
SP  - 17
EP  - 35
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_1996_2_a1/
LA  - en
ID  - TAC_1996_2_a1
ER  - 
%0 Journal Article
%A Michael Barr
%T The Chu construction
%J Theory and applications of categories
%D 1996
%P 17-35
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_1996_2_a1/
%G en
%F TAC_1996_2_a1
Michael Barr. The Chu construction. Theory and applications of categories, Tome 2 (1996), pp. 17-35. http://geodesic.mathdoc.fr/item/TAC_1996_2_a1/