Computing crossed modules induced by an inclusion of a normal subgroup,
with applications to homotopy 2-types
Theory and applications of categories, Tome 2 (1996), pp. 3-16
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We obtain some explicit calculations of crossed Q-modules induced from a crossed module over a normal subgroup P of Q. By virtue of theorems of Brown and Higgins, this enables the computation of the homotopy 2-types and second homotopy modules of certain homotopy pushouts of maps of classifying spaces of discrete groups.
Classification :
18G10, 20F38, 55P15, 55Q20.
Keywords: crossed modules, homotopy 2�types, generalized Van Kampen theorem, crossed resolution, Postnikov invariant, classifying spaces of discrete groups.
Keywords: crossed modules, homotopy 2�types, generalized Van Kampen theorem, crossed resolution, Postnikov invariant, classifying spaces of discrete groups.
@article{TAC_1996_2_a0,
author = {Ronald Brown and Christopher D. Wensley},
title = {Computing crossed modules induced by an inclusion of a normal subgroup,
with applications to homotopy 2-types},
journal = {Theory and applications of categories},
pages = {3--16},
year = {1996},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_1996_2_a0/}
}
TY - JOUR AU - Ronald Brown AU - Christopher D. Wensley TI - Computing crossed modules induced by an inclusion of a normal subgroup, with applications to homotopy 2-types JO - Theory and applications of categories PY - 1996 SP - 3 EP - 16 VL - 2 UR - http://geodesic.mathdoc.fr/item/TAC_1996_2_a0/ LA - en ID - TAC_1996_2_a0 ER -
%0 Journal Article %A Ronald Brown %A Christopher D. Wensley %T Computing crossed modules induced by an inclusion of a normal subgroup, with applications to homotopy 2-types %J Theory and applications of categories %D 1996 %P 3-16 %V 2 %U http://geodesic.mathdoc.fr/item/TAC_1996_2_a0/ %G en %F TAC_1996_2_a0
Ronald Brown; Christopher D. Wensley. Computing crossed modules induced by an inclusion of a normal subgroup, with applications to homotopy 2-types. Theory and applications of categories, Tome 2 (1996), pp. 3-16. http://geodesic.mathdoc.fr/item/TAC_1996_2_a0/