Computing crossed modules induced by an inclusion of a normal subgroup, with applications to homotopy 2-types
Theory and applications of categories, Tome 2 (1996), pp. 3-16

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We obtain some explicit calculations of crossed Q-modules induced from a crossed module over a normal subgroup P of Q. By virtue of theorems of Brown and Higgins, this enables the computation of the homotopy 2-types and second homotopy modules of certain homotopy pushouts of maps of classifying spaces of discrete groups.

Classification : 18G10, 20F38, 55P15, 55Q20.
Keywords: crossed modules, homotopy 2�types, generalized Van Kampen theorem, crossed resolution, Postnikov invariant, classifying spaces of discrete groups.
@article{TAC_1996_2_a0,
     author = {Ronald Brown and Christopher D. Wensley},
     title = {Computing crossed modules induced by an inclusion of a normal subgroup, 
with applications to homotopy 2-types},
     journal = {Theory and applications of categories},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {2},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_1996_2_a0/}
}
TY  - JOUR
AU  - Ronald Brown
AU  - Christopher D. Wensley
TI  - Computing crossed modules induced by an inclusion of a normal subgroup, 
with applications to homotopy 2-types
JO  - Theory and applications of categories
PY  - 1996
SP  - 3
EP  - 16
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_1996_2_a0/
LA  - en
ID  - TAC_1996_2_a0
ER  - 
%0 Journal Article
%A Ronald Brown
%A Christopher D. Wensley
%T Computing crossed modules induced by an inclusion of a normal subgroup, 
with applications to homotopy 2-types
%J Theory and applications of categories
%D 1996
%P 3-16
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_1996_2_a0/
%G en
%F TAC_1996_2_a0
Ronald Brown; Christopher D. Wensley. Computing crossed modules induced by an inclusion of a normal subgroup, 
with applications to homotopy 2-types. Theory and applications of categories, Tome 2 (1996), pp. 3-16. http://geodesic.mathdoc.fr/item/TAC_1996_2_a0/