On the Size of Categories
Theory and applications of categories, Tome 1 (1995), pp. 174-181

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

The purpose is to give a simple proof that a category is equivalent to a small category if and only if both it and its presheaf category are locally small.

Classification : 18A25.
Keywords: small, locally small, small homsets, idempotent, presheaf category.
@article{TAC_1995_1_a8,
     author = {Peter Freyd and Ross Street},
     title = {On the {Size} of {Categories}},
     journal = {Theory and applications of categories},
     pages = {174--181},
     publisher = {mathdoc},
     volume = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_1995_1_a8/}
}
TY  - JOUR
AU  - Peter Freyd
AU  - Ross Street
TI  - On the Size of Categories
JO  - Theory and applications of categories
PY  - 1995
SP  - 174
EP  - 181
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_1995_1_a8/
LA  - en
ID  - TAC_1995_1_a8
ER  - 
%0 Journal Article
%A Peter Freyd
%A Ross Street
%T On the Size of Categories
%J Theory and applications of categories
%D 1995
%P 174-181
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_1995_1_a8/
%G en
%F TAC_1995_1_a8
Peter Freyd; Ross Street. On the Size of Categories. Theory and applications of categories, Tome 1 (1995), pp. 174-181. http://geodesic.mathdoc.fr/item/TAC_1995_1_a8/