Symmetric monoidal categories model all connective spectra
Theory and applications of categories, Tome 1 (1995), pp. 78-118

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

The classical infinite loopspace machines in fact induce an equivalence of categories between a localization of the category of symmetric monoidal categories and the stable homotopy category of -1-connective spectra.

Classification : Primary: 55P42 Secondary: 18C15, 18D05, 18D10, 19D23, 55P47.
Keywords: club, connective spectrum, E1�space, operad, lax algebra, spectrum, stable homotopy, symmetric monoidal.
@article{TAC_1995_1_a4,
     author = {R. W. Thomason},
     title = {Symmetric monoidal categories model all connective spectra},
     journal = {Theory and applications of categories},
     pages = {78--118},
     publisher = {mathdoc},
     volume = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_1995_1_a4/}
}
TY  - JOUR
AU  - R. W. Thomason
TI  - Symmetric monoidal categories model all connective spectra
JO  - Theory and applications of categories
PY  - 1995
SP  - 78
EP  - 118
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_1995_1_a4/
LA  - en
ID  - TAC_1995_1_a4
ER  - 
%0 Journal Article
%A R. W. Thomason
%T Symmetric monoidal categories model all connective spectra
%J Theory and applications of categories
%D 1995
%P 78-118
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_1995_1_a4/
%G en
%F TAC_1995_1_a4
R. W. Thomason. Symmetric monoidal categories model all connective spectra. Theory and applications of categories, Tome 1 (1995), pp. 78-118. http://geodesic.mathdoc.fr/item/TAC_1995_1_a4/