Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2024_26_4_a3, author = {M. E. Ladonkina and Yu. A. Poveschenko and H. Zhang}, title = {Comparative analysis of some iterative processes for realization of fully conservative difference schemes for gas dynamics equations in {Euler} variables}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {404--423}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2024_26_4_a3/} }
TY - JOUR AU - M. E. Ladonkina AU - Yu. A. Poveschenko AU - H. Zhang TI - Comparative analysis of some iterative processes for realization of fully conservative difference schemes for gas dynamics equations in Euler variables JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2024 SP - 404 EP - 423 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2024_26_4_a3/ LA - ru ID - SVMO_2024_26_4_a3 ER -
%0 Journal Article %A M. E. Ladonkina %A Yu. A. Poveschenko %A H. Zhang %T Comparative analysis of some iterative processes for realization of fully conservative difference schemes for gas dynamics equations in Euler variables %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2024 %P 404-423 %V 26 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2024_26_4_a3/ %G ru %F SVMO_2024_26_4_a3
M. E. Ladonkina; Yu. A. Poveschenko; H. Zhang. Comparative analysis of some iterative processes for realization of fully conservative difference schemes for gas dynamics equations in Euler variables. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 4, pp. 404-423. http://geodesic.mathdoc.fr/item/SVMO_2024_26_4_a3/
[1] A. A. Samarskii, Yu. P. Popov, Raznostnye metody resheniya zadach gazovoi dinamiki, Nauka, M., 1980 | MR
[2] Yu. P. Popov, A. A. Samarskii, “Polnostyu konservativnye raznostnye skhemy”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 953–958 | Zbl
[3] A.V. Kuzmin, V.L. Makarov, “Ob odnom algoritme postroeniya polnostyu konservativnykh raznostnykh skhem”, ZhVMiMF., 22:1 (1982), 123-132 | MR | Zbl
[4] A.V. Kuzmin, V.L. Makarov, G.V. Meladze, “Ob odnoi polnostyu konservativnoi raznostnoi skheme dlya uravneniya gazovoi dinamiki v peremennykh eilera”, Zh. vychisl. matem. i matem. fiz., 20:1 (1980), 171-181 | MR | Zbl
[5] V.M. Goloviznin, I.V. Krayushkin, M.A. Ryazanov, “Samarskii A.A. Dvumernye polnostyu konservativnye raznostnye skhemy gazovoi dinamiki s raznesennymi skorostyami”, Preprinty IPM im M.V. Keldysha, ANSSSR, 105 (1983), 33 pp. | MR
[6] Yu.V. Popov, I.V. Fryazinov, Metoda adaptivnoi iskusstvennoi vyazkosti chislennogo resheniya uravnenii gazovoi dinamiki, Krasand, Moskva, 2014
[7] Yu. A. Poveschenko, M. E. Ladonkina, V. O. Podryga, O. R. Ragimli, Yu. S. Sharova, “Ob odnoi dvukhsloinoi polnostyu konservativnoi raznostnoi skheme gazovoi dinamiki v eilerovykh peremennykh s adaptivnoi regulyarizatsiei resheniya”, Preprinty IPM im. M. V. Keldysha, 2019, 014, 23 pp. | DOI
[8] O. Rahimly, V. Podryga, Y. Poveshchenko, P. Rahimly, Y. Sharova, “Two-Layer Completely Conservative Difference Scheme of Gas Dynamics in Eulerian Variables with Adaptive Regularization of Solution.”, Lecture Notes in Computer Science, 11958 (2020) (In Eng.) | DOI | MR | Zbl
[9] M. E. Ladonkina, Yu. A. Poveschenko, O. R. Ragimli, Kh. Chzhan, “Teoreticheskii analiz polnostyu konservativnykh raznostnykh skhem s adaptivnoi vyazkostyu”, Zhurnal SVMO, 23:4 (2021), 412–423 | DOI
[10] M. E. Ladonkina, Yu. A. Poveschenko, O. R. Ragimli, Kh. Chzhan, “Teoreticheskoe issledovanie ustoichivosti uzlovykh polnostyu konservativnykh raznostnykh skhem s vyazkim napolneniem dlya uravnenii gazovoi dinamiki v peremennykh Eilera”, Zhurnal SVMO, 24:3 (2022) | DOI
[11] Sod, G. A., “A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws”, Journal of Computational Physics, 27:1 (1978), 1-31 | DOI | MR | Zbl
[12] Ladonkina M. E., Poveschenko Yu. A., Chzhan Kh., “Ob odnoi polnostyu konservativnoi raznostnoi skheme s vyazkim napolneniem dlya uravnenii gazovoi dinamiki”, Molodezhnaya nauchnaya konferentsiya «Novye gorizonty prikladnoi matematiki – 2024», 2024, 48–49
[13] Zhuohang Wu, Yu-Xin Ren,, “A shock capturing artificial viscosity scheme in consistent with the compact high-order finite volume methods,”, Journal of Computational Physics, 516 (2024), 113291 | DOI | MR | Zbl
[14] VV. T. Nguyen, T. H. Phan, W. G. Park, “Numerical modeling of multiphase compressible flows with the presence of shock waves using an interface-sharpening five-equation model,”, International Journal of Multiphase Flow,, 135 (2021), 103542 | DOI | MR