Comparative analysis of some iterative processes for realization of fully conservative difference schemes for gas dynamics equations in Euler variables
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 4, pp. 404-423

Voir la notice de l'article provenant de la source Math-Net.Ru

In iterative algorithms for fully conservative difference schemes (FCDS) for the equations of gas dynamics in Euler variables, new methods for selecting adaptive artificial viscosity (AAV) have been developed, which are used both in explicit iterative processes and in the separate tridiagonal matrix algorithm. Various methods for incorporating AAV are discussed in this paper, including those for effectively suppressing oscillations in velocity profiles. All iterative methods are described in detail and block diagrams are given. A grid embedding method for modeling on spatially irregular sects is proposed. Calculations of the classical arbitrary discontinuity decay problem (the Sod problem) using FCDS and the developed AAV methods in different iterative processes have been performed. Comparative analysis is carried out and the efficiency of the developed improved iterative processes and approaches to the choice of AAV in comparison with the works of other authors is shown. All calculations are illustrated. The figures show variants of solutions of the Sod problem on uniform and non-uniform meshes, as well as a comparison of the methods proposed in the paper for the calculation of the Sod problem on a uniform grid.
Keywords: completely conservative difference scheme, method of reference operators, gas dynamics, Sod problem
@article{SVMO_2024_26_4_a3,
     author = {M. E. Ladonkina and Yu. A. Poveschenko and H. Zhang},
     title = {Comparative analysis of some  iterative processes for realization  of fully conservative difference schemes for gas dynamics equations in {Euler} variables},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {404--423},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2024_26_4_a3/}
}
TY  - JOUR
AU  - M. E. Ladonkina
AU  - Yu. A. Poveschenko
AU  - H. Zhang
TI  - Comparative analysis of some  iterative processes for realization  of fully conservative difference schemes for gas dynamics equations in Euler variables
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2024
SP  - 404
EP  - 423
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2024_26_4_a3/
LA  - ru
ID  - SVMO_2024_26_4_a3
ER  - 
%0 Journal Article
%A M. E. Ladonkina
%A Yu. A. Poveschenko
%A H. Zhang
%T Comparative analysis of some  iterative processes for realization  of fully conservative difference schemes for gas dynamics equations in Euler variables
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2024
%P 404-423
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2024_26_4_a3/
%G ru
%F SVMO_2024_26_4_a3
M. E. Ladonkina; Yu. A. Poveschenko; H. Zhang. Comparative analysis of some  iterative processes for realization  of fully conservative difference schemes for gas dynamics equations in Euler variables. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 4, pp. 404-423. http://geodesic.mathdoc.fr/item/SVMO_2024_26_4_a3/