Comparative analysis of some iterative processes for realization of fully conservative difference schemes for gas dynamics equations in Euler variables
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 4, pp. 404-423.

Voir la notice de l'article provenant de la source Math-Net.Ru

In iterative algorithms for fully conservative difference schemes (FCDS) for the equations of gas dynamics in Euler variables, new methods for selecting adaptive artificial viscosity (AAV) have been developed, which are used both in explicit iterative processes and in the separate tridiagonal matrix algorithm. Various methods for incorporating AAV are discussed in this paper, including those for effectively suppressing oscillations in velocity profiles. All iterative methods are described in detail and block diagrams are given. A grid embedding method for modeling on spatially irregular sects is proposed. Calculations of the classical arbitrary discontinuity decay problem (the Sod problem) using FCDS and the developed AAV methods in different iterative processes have been performed. Comparative analysis is carried out and the efficiency of the developed improved iterative processes and approaches to the choice of AAV in comparison with the works of other authors is shown. All calculations are illustrated. The figures show variants of solutions of the Sod problem on uniform and non-uniform meshes, as well as a comparison of the methods proposed in the paper for the calculation of the Sod problem on a uniform grid.
Keywords: completely conservative difference scheme, method of reference operators, gas dynamics, Sod problem
@article{SVMO_2024_26_4_a3,
     author = {M. E. Ladonkina and Yu. A. Poveschenko and H. Zhang},
     title = {Comparative analysis of some  iterative processes for realization  of fully conservative difference schemes for gas dynamics equations in {Euler} variables},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {404--423},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2024_26_4_a3/}
}
TY  - JOUR
AU  - M. E. Ladonkina
AU  - Yu. A. Poveschenko
AU  - H. Zhang
TI  - Comparative analysis of some  iterative processes for realization  of fully conservative difference schemes for gas dynamics equations in Euler variables
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2024
SP  - 404
EP  - 423
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2024_26_4_a3/
LA  - ru
ID  - SVMO_2024_26_4_a3
ER  - 
%0 Journal Article
%A M. E. Ladonkina
%A Yu. A. Poveschenko
%A H. Zhang
%T Comparative analysis of some  iterative processes for realization  of fully conservative difference schemes for gas dynamics equations in Euler variables
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2024
%P 404-423
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2024_26_4_a3/
%G ru
%F SVMO_2024_26_4_a3
M. E. Ladonkina; Yu. A. Poveschenko; H. Zhang. Comparative analysis of some  iterative processes for realization  of fully conservative difference schemes for gas dynamics equations in Euler variables. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 4, pp. 404-423. http://geodesic.mathdoc.fr/item/SVMO_2024_26_4_a3/

[1] A. A. Samarskii, Yu. P. Popov, Raznostnye metody resheniya zadach gazovoi dinamiki, Nauka, M., 1980 | MR

[2] Yu. P. Popov, A. A. Samarskii, “Polnostyu konservativnye raznostnye skhemy”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 953–958 | Zbl

[3] A.V. Kuzmin, V.L. Makarov, “Ob odnom algoritme postroeniya polnostyu konservativnykh raznostnykh skhem”, ZhVMiMF., 22:1 (1982), 123-132 | MR | Zbl

[4] A.V. Kuzmin, V.L. Makarov, G.V. Meladze, “Ob odnoi polnostyu konservativnoi raznostnoi skheme dlya uravneniya gazovoi dinamiki v peremennykh eilera”, Zh. vychisl. matem. i matem. fiz., 20:1 (1980), 171-181 | MR | Zbl

[5] V.M. Goloviznin, I.V. Krayushkin, M.A. Ryazanov, “Samarskii A.A. Dvumernye polnostyu konservativnye raznostnye skhemy gazovoi dinamiki s raznesennymi skorostyami”, Preprinty IPM im M.V. Keldysha, ANSSSR, 105 (1983), 33 pp. | MR

[6] Yu.V. Popov, I.V. Fryazinov, Metoda adaptivnoi iskusstvennoi vyazkosti chislennogo resheniya uravnenii gazovoi dinamiki, Krasand, Moskva, 2014

[7] Yu. A. Poveschenko, M. E. Ladonkina, V. O. Podryga, O. R. Ragimli, Yu. S. Sharova, “Ob odnoi dvukhsloinoi polnostyu konservativnoi raznostnoi skheme gazovoi dinamiki v eilerovykh peremennykh s adaptivnoi regulyarizatsiei resheniya”, Preprinty IPM im. M. V. Keldysha, 2019, 014, 23 pp. | DOI

[8] O. Rahimly, V. Podryga, Y. Poveshchenko, P. Rahimly, Y. Sharova, “Two-Layer Completely Conservative Difference Scheme of Gas Dynamics in Eulerian Variables with Adaptive Regularization of Solution.”, Lecture Notes in Computer Science, 11958 (2020) (In Eng.) | DOI | MR | Zbl

[9] M. E. Ladonkina, Yu. A. Poveschenko, O. R. Ragimli, Kh. Chzhan, “Teoreticheskii analiz polnostyu konservativnykh raznostnykh skhem s adaptivnoi vyazkostyu”, Zhurnal SVMO, 23:4 (2021), 412–423 | DOI

[10] M. E. Ladonkina, Yu. A. Poveschenko, O. R. Ragimli, Kh. Chzhan, “Teoreticheskoe issledovanie ustoichivosti uzlovykh polnostyu konservativnykh raznostnykh skhem s vyazkim napolneniem dlya uravnenii gazovoi dinamiki v peremennykh Eilera”, Zhurnal SVMO, 24:3 (2022) | DOI

[11] Sod, G. A., “A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws”, Journal of Computational Physics, 27:1 (1978), 1-31 | DOI | MR | Zbl

[12] Ladonkina M. E., Poveschenko Yu. A., Chzhan Kh., “Ob odnoi polnostyu konservativnoi raznostnoi skheme s vyazkim napolneniem dlya uravnenii gazovoi dinamiki”, Molodezhnaya nauchnaya konferentsiya «Novye gorizonty prikladnoi matematiki – 2024», 2024, 48–49

[13] Zhuohang Wu, Yu-Xin Ren,, “A shock capturing artificial viscosity scheme in consistent with the compact high-order finite volume methods,”, Journal of Computational Physics, 516 (2024), 113291 | DOI | MR | Zbl

[14] VV. T. Nguyen, T. H. Phan, W. G. Park, “Numerical modeling of multiphase compressible flows with the presence of shock waves using an interface-sharpening five-equation model,”, International Journal of Multiphase Flow,, 135 (2021), 103542 | DOI | MR