Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2024_26_4_a0, author = {A. V. Bagaev}, title = {Attractors of semigroups generated by a finite family of contraction transformations of a complete metric space}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {359--375}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2024_26_4_a0/} }
TY - JOUR AU - A. V. Bagaev TI - Attractors of semigroups generated by a finite family of contraction transformations of a complete metric space JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2024 SP - 359 EP - 375 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2024_26_4_a0/ LA - ru ID - SVMO_2024_26_4_a0 ER -
%0 Journal Article %A A. V. Bagaev %T Attractors of semigroups generated by a finite family of contraction transformations of a complete metric space %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2024 %P 359-375 %V 26 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2024_26_4_a0/ %G ru %F SVMO_2024_26_4_a0
A. V. Bagaev. Attractors of semigroups generated by a finite family of contraction transformations of a complete metric space. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 4, pp. 359-375. http://geodesic.mathdoc.fr/item/SVMO_2024_26_4_a0/
[1] E. Kontorovich, M. Megrelishvili, “A note on sensitivity of semigroup actions”, Semigroup Forum, 76:1 (2008), 133–141 | DOI | MR | Zbl
[2] F.M. Schneider, S. Kerkhoff, M. Behrisch, S. Siegmund, “Chaotic actions of topological semigroups”, Semigroup Forum, 87 (2013), 590–598 | DOI | MR | Zbl
[3] J. Iglesias, A. Portela, “Almost open semigroup actions”, Semigroup Forum, 98 (2019), 261–270 | DOI | MR | Zbl
[4] A. Nagar, M. Singh, Topological dynamics of enveloping semigroups, Springer, Singapore, 2023, 87 pp. | MR
[5] N.I. Zhukova, “Sensitivity and chaoticity of some classes of semigroup actions”, Regular and Chaotic Dynamics, 29:1 (2024), 174–189 | DOI | MR | Zbl
[6] R. M. Kronover, Fraktaly i khaos v dinamicheskikh sistemakh. Osnovy teorii, Postmarket, M., 2000, 352 pp.
[7] M. F. Barnsley, Fractals everywhere, Academic Press, Boston, 1988, 394 pp. | MR | Zbl
[8] J. E. Hutchinson, “Fractals and self-similarity”, Indiana University Mathematics Journal, 30 (1981), 713–-747 | DOI | MR | Zbl
[9] K.J. Falconer, Fractal geometry: mathematical foundations and applications, John Wiley and Sons, New York, 2014, 400 pp. | MR | Zbl
[10] M. Yamaguti, M. Hata, J. Kigami, Mathematics of Fractals, American Mathematical Society, Providence, 1997, 90 pp. | DOI | MR | Zbl
[11] N.I. Zhukova, “Minimal sets of Cartan foliations”, Proceedings of the Steklov Institute of Mathematics, 256 (2007), 105–135 | DOI | MR | Zbl
[12] A.V. Bagaev, A.V. Kiseleva, “O mnogomernykh analogakh treugolnika Serpinskogo”, XXVI Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya «Informatsionnye sistemy i tekhnologii-2020» (N.Novgorod, 27-28 aprelya 2020 goda), Nizhegorodskii gosudarstvennyi tekhnicheskii universitet im. R.E.Alekseeva, N.Novgorod, 2020, 1148–1152