The energy function for diffeomorphisms with expanding attractors and contracting repellers
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 3, pp. 231-244.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider $\Omega$-stable diffeomorphisms defined on smooth closed orientable manifolds of dimension $n \geq 3$, whose all nontrivial basic sets are either expanding attractors or contracting repellers of co-dimension $1$. Due to the simple topological structure of the basins of such attractors and repellers, one can make a transition from a given dynamical system with nontrivial basic sets to a regular system which is a homeomorphism with a finite hyperbolic chain-recurrent set. It is well known that not every discrete dynamical systems has energy functions, i.e. a global Lyapunov function whose set of critical points coincides with the chain-recurrent set of the system. Counterexamples were found both among regular diffeomorphisms and among diffeomorphisms with chaotic dynamics. The main result of this paper is the proof of the fact that the topological energy functions for the original diffeomorphism and for its corresponding regular homeomorphism exist or do not exist simultaneously. Thus, numerous results obtained in the field of existence of energy functions for systems with regular dynamics, e.g., for Morse-Smale diffeomorphisms, may be applied to the study of the diffeomorphisms with expanding attractors and contracting repellers of co-dimension $1$.
Keywords: energy function, $\Omega$-stable diffeomorphism, expanding attractor, contracting repeller
@article{SVMO_2024_26_3_a0,
     author = {O. A. Kol'churina},
     title = {The energy function for diffeomorphisms with expanding attractors and contracting repellers},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {231--244},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2024_26_3_a0/}
}
TY  - JOUR
AU  - O. A. Kol'churina
TI  - The energy function for diffeomorphisms with expanding attractors and contracting repellers
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2024
SP  - 231
EP  - 244
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2024_26_3_a0/
LA  - ru
ID  - SVMO_2024_26_3_a0
ER  - 
%0 Journal Article
%A O. A. Kol'churina
%T The energy function for diffeomorphisms with expanding attractors and contracting repellers
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2024
%P 231-244
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2024_26_3_a0/
%G ru
%F SVMO_2024_26_3_a0
O. A. Kol'churina. The energy function for diffeomorphisms with expanding attractors and contracting repellers. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 3, pp. 231-244. http://geodesic.mathdoc.fr/item/SVMO_2024_26_3_a0/

[1] C. Conley, “Isolated invariant sets and the Morse index”, American Mathematical Society, 38:1 (1978), 100 | MR

[2] S. Smale, “On gradient dynamical systems”, Ann. of Math, 74:1 (1961), 199–206 | DOI | MR | Zbl

[3] K. R. Meyer, “Energy functions for Morse Smale systems”, American Journal of Mathematics, 90:4 (1968), 1031–1040 | DOI | MR | Zbl

[4] J. Franks, “Nonsingular smale flows on $S^3$”, Topology, 24 (1985), 265–282 | DOI | MR | Zbl

[5] V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “Energeticheskaya funktsiya gradientno-podobnykh potokov i problema topologicheskoi klassifikatsii”, Matematicheskie zametki, 96:6 (2014), 856-863 | DOI | Zbl

[6] A. A. Bosova, V. E. Kruglov, O. V. Pochinka, “Energeticheskaya funktsiya dlya $\Omega$-ustoichivogo potoka s sedlovoi svyazkoi na sfere”, TVIM, 2017, no. 4, 51–58

[7] A. E. Kolobyanina, V. E. Kruglov, “Energeticheskaya funktsiya Morsa-Botta dlya poverkhnostnykh $\Omega$-ustoichivykh potokov”, Zhurnal SVMO, 22:4 (2020), 434–441 | Zbl

[8] O. V. Pochinka, S. Kh. Zinina, “Dinamika regulyarnykh topologicheskikh potokov”, TVIM, 2020, no. 3, 77–91

[9] O. V. Pochinka, S. K. Zinina, “Construction of the Morse–Bott energy function for regular topological flows”, Regul. Chaotic Dyn., 26:4 (2021), 350–369 | DOI | MR | Zbl

[10] V. Z. Grines, O. V. Pochinka, “Postroenie energeticheskikh funktsii dlya $\Omega$-ustoichivykh diffeomorfizmov na $2$- i $3$-mnogoobraziyakh”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 63, Rossiiskii universitet druzhby narodov, M., 2017, 191–222 pp. | DOI

[11] D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR | Zbl

[12] V. Z. Grines, F. Laudenbakh, O. V. Pochinka, “Kvazi-energeticheskaya funktsiya dlya diffeomorfizmov s dikimi separatrisami”, Matem. zametki, 86:2 (2009), 175–183 | DOI | Zbl

[13] T. M. Mitryakova, O. V. Pochinka, A. E. Shishenkova, “Energeticheskaya funktsiya dlya diffeomorfizmov poverkhnostei s konechnym giperbolicheskim tsepno rekurrentnym mnozhestvom”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 14:1 (2012), 98–106 | Zbl

[14] V. Z. Grines, F. Laudenbakh, O. V. Pochinka, “Dinamicheski uporyadochennaya energeticheskaya funktsiya dlya diffeomorfizmov Morsa–Smeila na $3$-mnogoobraziyakh”, Differentsialnye uravneniya i dinamicheskie sistemy, Sbornik statei, Trudy MIAN, 278, MAIK «Nauka/Interperiodika», M., 2012, 34–48

[15] M. K. Barinova, V. Z. Grines, O.V̇. Pochinka, “Kriterii suschestvovaniya energeticheskoi funktsii u regulyarnogo gomeomorfizma 3-sfery”, Optimalnoe upravlenie i dinamicheskie sistemy, Sbornik statei. K 95-letiyu akademika Revaza Valerianovicha Gamkrelidze, Trudy MIAN, 321, MIAN, M., 2023, 45–61 | DOI | MR

[16] M. K. Barinova, “On existence of an energy function for $\Omega$-stable surface diffeomorphisms”, Lobachevskii Journal of Mathematics, 43 (2022), 257–263 | DOI | MR

[17] V. Z. Grines, M. K. Noskova, O. V. Pochinka, “Energeticheskaya funktsiya dlya A-diffeomorfizmov poverkhnostei s odnomernymi netrivialnymi bazisnymi mnozhestvami”, Dinamicheskie sistemy, 5 (2015), 31–37 | Zbl

[18] V. Z. Grines, M. K. Noskova, O.V̇. Pochinka, “Postroenie energeticheskoi funktsii dlya trekhmernykh kaskadov s dvumernym rastyagivayuschimsya attraktorom”, Tr. MMO, 76, MTsNMO, M., 2015, 271–286

[19] M. K. Barinova, V. Z. Grines, O. V. Pochinka, B. Yu, “Existence of an energy function for three-dimensional chaotic “sink-source” cascades”, Chaos, 31:6 (2021), 1–8 | DOI | MR

[20] M. K. Barinova, E. K. Shustova, “Ob energeticheskoi funktsii dlya pryamogo proizvedeniya diskretnykh dinamicheskikh sistem”, Zhurnal SVMO, 25:2 (2023), 11–21 | DOI | Zbl

[21] M. K. Barinova, E. K. Shustova, “Dinamicheskie svoistva pryamykh proizvedenii diskretnykh dinamicheskikh sistem”, Zhurnal SVMO, 24:1 (2022), 21–30 | DOI | Zbl

[22] J. Palis, W. Melo, Geometric theory of dynamical systems: an introduction, NY: Springer New York, 2012, 198 pp. | MR

[23] M. Shub, “Stabilité globale des systèmes dynamiques”, Astérisque, 1978, no. 56, 224 | MR | Zbl

[24] S. Smale, “The $\Omega$-stability theorem, Global Analysis”, Proc. Symp. Pure Math, 14 (1970), 289–297 | DOI | MR | Zbl

[25] J. E. Franke, J. F. Selgrade, “Hyperbolicity and chain recurrence”, Journal of Differential Equations, 26:1 (1977), 27–36, Elsevier | DOI | MR

[26] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 747 – 817:6 (1967), 747 – 817 | DOI | MR | Zbl

[27] J. Milnor, “On manifolds homeomorphic to the 7-sphere”, Annals of Mathematics, 64:2 (1956), 399–405 | DOI | MR | Zbl

[28] S. K. Donaldson, “An application of gauge theory to four-dimensional topology”, Journal of Differential Geometry, 18:2 (1983), 279–315 | MR | Zbl

[29] M. K. Barinova, “On isolated periodic points of diffeomorphisms with expanding attractors of codimension 1”, Cornell University. Series Math Arxiv.org, 2024 | DOI | MR | Zbl

[30] V. Z. Grines, V. S. Medvedev, E. V. Zhuzhoma, “On the Topological Structure of Manifolds Supporting Axiom A Systems”, Regul. Chaot. Dyn., 27 (2022), 613–628 | DOI | MR | Zbl