Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2024_26_3_a0, author = {O. A. Kol'churina}, title = {The energy function for diffeomorphisms with expanding attractors and contracting repellers}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {231--244}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2024_26_3_a0/} }
TY - JOUR AU - O. A. Kol'churina TI - The energy function for diffeomorphisms with expanding attractors and contracting repellers JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2024 SP - 231 EP - 244 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2024_26_3_a0/ LA - ru ID - SVMO_2024_26_3_a0 ER -
%0 Journal Article %A O. A. Kol'churina %T The energy function for diffeomorphisms with expanding attractors and contracting repellers %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2024 %P 231-244 %V 26 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2024_26_3_a0/ %G ru %F SVMO_2024_26_3_a0
O. A. Kol'churina. The energy function for diffeomorphisms with expanding attractors and contracting repellers. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 3, pp. 231-244. http://geodesic.mathdoc.fr/item/SVMO_2024_26_3_a0/
[1] C. Conley, “Isolated invariant sets and the Morse index”, American Mathematical Society, 38:1 (1978), 100 | MR
[2] S. Smale, “On gradient dynamical systems”, Ann. of Math, 74:1 (1961), 199–206 | DOI | MR | Zbl
[3] K. R. Meyer, “Energy functions for Morse Smale systems”, American Journal of Mathematics, 90:4 (1968), 1031–1040 | DOI | MR | Zbl
[4] J. Franks, “Nonsingular smale flows on $S^3$”, Topology, 24 (1985), 265–282 | DOI | MR | Zbl
[5] V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “Energeticheskaya funktsiya gradientno-podobnykh potokov i problema topologicheskoi klassifikatsii”, Matematicheskie zametki, 96:6 (2014), 856-863 | DOI | Zbl
[6] A. A. Bosova, V. E. Kruglov, O. V. Pochinka, “Energeticheskaya funktsiya dlya $\Omega$-ustoichivogo potoka s sedlovoi svyazkoi na sfere”, TVIM, 2017, no. 4, 51–58
[7] A. E. Kolobyanina, V. E. Kruglov, “Energeticheskaya funktsiya Morsa-Botta dlya poverkhnostnykh $\Omega$-ustoichivykh potokov”, Zhurnal SVMO, 22:4 (2020), 434–441 | Zbl
[8] O. V. Pochinka, S. Kh. Zinina, “Dinamika regulyarnykh topologicheskikh potokov”, TVIM, 2020, no. 3, 77–91
[9] O. V. Pochinka, S. K. Zinina, “Construction of the Morse–Bott energy function for regular topological flows”, Regul. Chaotic Dyn., 26:4 (2021), 350–369 | DOI | MR | Zbl
[10] V. Z. Grines, O. V. Pochinka, “Postroenie energeticheskikh funktsii dlya $\Omega$-ustoichivykh diffeomorfizmov na $2$- i $3$-mnogoobraziyakh”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 63, Rossiiskii universitet druzhby narodov, M., 2017, 191–222 pp. | DOI
[11] D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR | Zbl
[12] V. Z. Grines, F. Laudenbakh, O. V. Pochinka, “Kvazi-energeticheskaya funktsiya dlya diffeomorfizmov s dikimi separatrisami”, Matem. zametki, 86:2 (2009), 175–183 | DOI | Zbl
[13] T. M. Mitryakova, O. V. Pochinka, A. E. Shishenkova, “Energeticheskaya funktsiya dlya diffeomorfizmov poverkhnostei s konechnym giperbolicheskim tsepno rekurrentnym mnozhestvom”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 14:1 (2012), 98–106 | Zbl
[14] V. Z. Grines, F. Laudenbakh, O. V. Pochinka, “Dinamicheski uporyadochennaya energeticheskaya funktsiya dlya diffeomorfizmov Morsa–Smeila na $3$-mnogoobraziyakh”, Differentsialnye uravneniya i dinamicheskie sistemy, Sbornik statei, Trudy MIAN, 278, MAIK «Nauka/Interperiodika», M., 2012, 34–48
[15] M. K. Barinova, V. Z. Grines, O.V̇. Pochinka, “Kriterii suschestvovaniya energeticheskoi funktsii u regulyarnogo gomeomorfizma 3-sfery”, Optimalnoe upravlenie i dinamicheskie sistemy, Sbornik statei. K 95-letiyu akademika Revaza Valerianovicha Gamkrelidze, Trudy MIAN, 321, MIAN, M., 2023, 45–61 | DOI | MR
[16] M. K. Barinova, “On existence of an energy function for $\Omega$-stable surface diffeomorphisms”, Lobachevskii Journal of Mathematics, 43 (2022), 257–263 | DOI | MR
[17] V. Z. Grines, M. K. Noskova, O. V. Pochinka, “Energeticheskaya funktsiya dlya A-diffeomorfizmov poverkhnostei s odnomernymi netrivialnymi bazisnymi mnozhestvami”, Dinamicheskie sistemy, 5 (2015), 31–37 | Zbl
[18] V. Z. Grines, M. K. Noskova, O.V̇. Pochinka, “Postroenie energeticheskoi funktsii dlya trekhmernykh kaskadov s dvumernym rastyagivayuschimsya attraktorom”, Tr. MMO, 76, MTsNMO, M., 2015, 271–286
[19] M. K. Barinova, V. Z. Grines, O. V. Pochinka, B. Yu, “Existence of an energy function for three-dimensional chaotic “sink-source” cascades”, Chaos, 31:6 (2021), 1–8 | DOI | MR
[20] M. K. Barinova, E. K. Shustova, “Ob energeticheskoi funktsii dlya pryamogo proizvedeniya diskretnykh dinamicheskikh sistem”, Zhurnal SVMO, 25:2 (2023), 11–21 | DOI | Zbl
[21] M. K. Barinova, E. K. Shustova, “Dinamicheskie svoistva pryamykh proizvedenii diskretnykh dinamicheskikh sistem”, Zhurnal SVMO, 24:1 (2022), 21–30 | DOI | Zbl
[22] J. Palis, W. Melo, Geometric theory of dynamical systems: an introduction, NY: Springer New York, 2012, 198 pp. | MR
[23] M. Shub, “Stabilité globale des systèmes dynamiques”, Astérisque, 1978, no. 56, 224 | MR | Zbl
[24] S. Smale, “The $\Omega$-stability theorem, Global Analysis”, Proc. Symp. Pure Math, 14 (1970), 289–297 | DOI | MR | Zbl
[25] J. E. Franke, J. F. Selgrade, “Hyperbolicity and chain recurrence”, Journal of Differential Equations, 26:1 (1977), 27–36, Elsevier | DOI | MR
[26] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 747 – 817:6 (1967), 747 – 817 | DOI | MR | Zbl
[27] J. Milnor, “On manifolds homeomorphic to the 7-sphere”, Annals of Mathematics, 64:2 (1956), 399–405 | DOI | MR | Zbl
[28] S. K. Donaldson, “An application of gauge theory to four-dimensional topology”, Journal of Differential Geometry, 18:2 (1983), 279–315 | MR | Zbl
[29] M. K. Barinova, “On isolated periodic points of diffeomorphisms with expanding attractors of codimension 1”, Cornell University. Series Math Arxiv.org, 2024 | DOI | MR | Zbl
[30] V. Z. Grines, V. S. Medvedev, E. V. Zhuzhoma, “On the Topological Structure of Manifolds Supporting Axiom A Systems”, Regul. Chaot. Dyn., 27 (2022), 613–628 | DOI | MR | Zbl