Modified projection generalized two-point two-stage extragradient quasinewton method for saddle point problems
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 2, pp. 123-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this work is to investigate a new method mentioned in the article’s name. This method is designed for solving saddle problems with convexo-concave differentiable function that is defined on a convex closed subset of some finite-dimensional euclidean space and has "ravine’’ level hypersurfaces. The paper contains a brief survey of native publications devoted to new projection gradient methods for solving saddle problems. A mathematical statement of a saddle problem, information about solution method, some auxiliary inequalities, and method’s convergence are discussed in the article as well. Moreover, iterative formulas are exemplified for another perspective saddle method for convexo-concave differentiable saddle functions, which may be validated as well as formulas proved in this work. New auxiliary inequalities complete mathematical apparatus of convex analysis for justification of convergence and rate of convergence and have value also for justification of another methods of operations research. By using obtained inequalities, convex analysis and numerical mathematics, convergence of the saddle method for convexo-concave smooth saddle functions with Lipschitz partial gradients is proved. Under supplementary conditions, for twice continuously differentiable saddle functions, superlinear and quadratic rate of convergence of saddle method are proved, too.
Keywords: convexo-concave saddle function, saddle point problem, projection generalized two-point two-stage extragradient quasinewton saddle method
@article{SVMO_2024_26_2_a1,
     author = {V. G. Malinov},
     title = {Modified projection generalized two-point two-stage extragradient quasinewton method for saddle point problems},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {123--142},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a1/}
}
TY  - JOUR
AU  - V. G. Malinov
TI  - Modified projection generalized two-point two-stage extragradient quasinewton method for saddle point problems
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2024
SP  - 123
EP  - 142
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a1/
LA  - ru
ID  - SVMO_2024_26_2_a1
ER  - 
%0 Journal Article
%A V. G. Malinov
%T Modified projection generalized two-point two-stage extragradient quasinewton method for saddle point problems
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2024
%P 123-142
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a1/
%G ru
%F SVMO_2024_26_2_a1
V. G. Malinov. Modified projection generalized two-point two-stage extragradient quasinewton method for saddle point problems. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 26 (2024) no. 2, pp. 123-142. http://geodesic.mathdoc.fr/item/SVMO_2024_26_2_a1/

[1] Demyanov V. F., Pevnyi A. B., “Chislennye metody razyskaniya sedlovykh tochek”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki., 12:5 (1972), 1099–1127 pp. | MR

[2] Korpelevich G. M., “Ekstrapolyatsionnye gradientnye metody i ikh svyaz s modifitsirovannymi funktsiyami Lagranzha”, Ekonomika i matematicheskie metody, 19:4 (1983.), 694–703. pp. | MR | Zbl

[3] Antipin A. S., Gradientnyi i ekstragradientnyi podkhody v bilineinom i ravnovesnom programmirovanii, Izd-vo VTs RAN, M., 2002, 131 pp.

[4] Antipin A. S., Vasilev F. P., “O nepreryvnom metode minimizatsii v prostranstvakh s peremennoi metrikoi”, Izvestiya vuzov. Matematika, 1995, no. 12(403), 3–9 \ pp.

[5] Amochkina T. V., “Nepreryvnyi metod proektsii gradienta vtorogo poryadka s peremennoi metrikoi”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki [Jurnal vychislitelnoy matematiki i matem. Phyziki], 37:10 (1997), 1174–1182. pp. | MR | Zbl

[6] Malinov V. G., “O proektsionnom kvazinyutonovskom obobschennom dvukhshagovom metode minimizatsii i optimizatsii traektorii letatelnogo apparata”, [Journal of Middlevolga Mathematical Society] Zhurnal Srednevolzhskogo matematicheskogo obschestva, 12:4 (2010), 37–48. \ pp. | Zbl

[7] Malinov V. G., “Proektsionnyi obobschennyi dvukhtochechnyi ekstragradientnyi kvazinyutonovskii metod resheniya sedlovykh i drugikh zadach [Projection generalized two-point extragradient quasinewton method for saddle point and other problems]”, [Journal of Computational Mathematics and Mathematical Physics], 60:2 (2020), 221–233. pp. | MR | Zbl

[8] V. G. Malinov, VI Moscow International Conference on Operation Research (ORM2010), MAKS PRESS, Moscow, 2010, 207–209 pp. (In Russ.)

[9] V. G. Malinov, “Versions of two projection two-step methods for saddle point and other problems”, VII Moscow International Conference on Operation Research (ORM2013)., 2 (2013), 25–27 (In Russ.) | MR

[10] V. G. Malinov, “On versions of two projection generalized two-step extragradient methods for equilibrium and other problems”, Applied mathematics and mechanics, 2014, 161–178 | Zbl

[11] V. G. Malinov, “Continuous projection generalized extragradient quasinewton second order method for saddle-point problems”, Journal of Computational Mathematics and Mathematical Physics, 62:5 (2022), 777–789 pp. (In Russ.) | MR | Zbl

[12] Antipin A. S., Metody nelineinogo programmirovaniya, osnovannye na pryamoi i dvoistvennoi modifikatsii funktsii Lagranzha. Preprint, VNII Sistemnykh issledovanii, M., 1979, 74 pp.

[13] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988, 552 pp. | MR

[14] Karmanov V. G., Matematicheskoe programmirovanie, Nauka, M., 1975, 272 pp. | MR

[15] Conn A. R., Gould N. I. M., Toint Ph. L., “Convergence of quasi-Newton matrices generated by the symmetric rank one update”, Mathematical Programming, 50:2 (1991), 177–195. pp. | DOI | MR