Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2023_25_4_a9, author = {A. R. Yapparova and T. V. Markelova and P. V. Snytnikov}, title = {Numerical model of vapor-air-diesel autothermal reformer}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {361--374}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a9/} }
TY - JOUR AU - A. R. Yapparova AU - T. V. Markelova AU - P. V. Snytnikov TI - Numerical model of vapor-air-diesel autothermal reformer JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2023 SP - 361 EP - 374 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a9/ LA - ru ID - SVMO_2023_25_4_a9 ER -
%0 Journal Article %A A. R. Yapparova %A T. V. Markelova %A P. V. Snytnikov %T Numerical model of vapor-air-diesel autothermal reformer %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2023 %P 361-374 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a9/ %G ru %F SVMO_2023_25_4_a9
A. R. Yapparova; T. V. Markelova; P. V. Snytnikov. Numerical model of vapor-air-diesel autothermal reformer. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 4, pp. 361-374. http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a9/
[1] S.V. Zazhigalov, V.N. Rogozhnikov, P.V. Snytnikov, D.I. Potemkin, P.A. Simonov, V.A. Shilov, N.V. Ruban, A.V. Kulikov, A.N. Zagoruiko, V.A. Sobyanin, “Simulation of diesel autothermal reforming over $Rh/Ce_{0.75}Zr_{0.25}O_{2-}\delta-\eta-Al_2O_3/FeCrAl$ wire mesh honeycomb catalytic module”, Chem. Eng. Process. Process Intensif., 150 (2020), 107876 | DOI
[2] S.V. Zazhigalov, V.A. Shilov, V.N. Rogozhnikov, D.I. Potemkin, V.A. Sobyanin, A.N. Zagoruiko, P.V. Snytnikov, “Modeling of hydrogen production by diesel reforming over $Rh/Ce_{0.75}Zr_{0.25}O_{2-}\delta-\eta-Al_2O_3/FeCrAl$ wire mesh honeycomb catalytic module”, Catalysis Today, 378 (2021), 240–248 | DOI
[3] N.V. Ruban, V.N. Rogozhnikov, O.A. Stonkus, V.A. Emelyanov, V.P. Pakharukova, D.A. Svintsitskiy, S.V. Zazhigalov, A.N. Zagoruiko, P.V. Snytnikov, V.A. Sobyanin, D.I. Potemkin, “A comparative investigation of equimolar $Ni-$, $Ru-$, $Rh-$ and $Pt-$ based composite structured catalysts for energy-efficient methane reforming”, Fuel, 352 (2023), 128973 | DOI
[4] J. Pasel, R.C. Samsun, A. Tschauder, R. Peters, D. Stolten, “Advances in autothermal reformer design”, Applied Energy, 198 (2017), 88–98 | DOI
[5] J. Pasel, C.S. Remzi, J. Meissner, A. Tschauder, R. Peters, “Recent advances in diesel autothermal reformer design”, International Journal of Hydrogen Energy, 45:3 (2020), 2279-2288 | DOI
[6] Z. Por?, J. Pasel, A. Tschauder, R. Dahl, R. Peters, D. Stolten, “Optimised mixture formation for diesel fuel processing”, Fuel Cells, 8 (2008), 129–137 | DOI
[7] A.Yu. Varaksin, “Gidrogazodinamika i teplofizika dvukhfaznykh potokov: problemy i dostizheniya (Obzor)”, TVT, 51:3 (2013), 421–455
[8] Tahery R. and Modarress H., “Lennard-Jones Energy Parameter for Pure Fluids from Scaled Particle Theory”, Iranian Journal of Chemistry and Chemical Engineering, 26:2 (2007), 1-8
[9] M. Huber, Preliminary Models for Viscosity, Thermal Conductivity, and Surface Tension of Pure Fluid Constituents of Selected Diesel Surrogate Fuels, Technical Note National Institute of Standards and Technology, Gaithersburg, MD, 2017, 62 pp.