Nonholonomic mechanical systems on a plane with a variable slope
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 4, pp. 326-341.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers such nonholonomic mechanical systems as Chaplygin skate, inhomogeneous Chaplygin sleigh and Chaplygin sphere moving in the gravity field along an oscillating plane with a slope varying with the periodic law. By explicit integration of the equations of motion, analytical expressions for the velocities and trajectories of the contact point for Chaplygin skate and Chaplygin sleigh are obtained. Numerical parameters of the periodic law for the inclination angle change are found, such that the velocity of Chaplygin skate will be unbounded, that is, an acceleration will take place. In the case of inhomogeneous Chaplygin sleigh, on the contrary, numerical parameters of the periodic law of the inclination angle change are found, for which the sleigh velocity is bounded and there is no drift of the sleigh. For similar numerical parameters and initial conditions, when the sleigh moves along a horizontal or inclined plane with the constant slope, the velocity and trajectory of the contact point are unbounded, that is, there is a drift of the sleigh. A similar problem is solved for the Chaplygin sphere; its trajectories are constructed on the basis of numerical integration. The results are illustrated graphically. The control of the slope of the plane, depending on the angular momentum of the sphere, is proposed for discussion. Regardless of the initial conditions, such control can almost always prevent the drift of the sphere in one of the directions.
Keywords: nonholonomic system, Chaplygin sleigh, Chaplygin sphere, variable slope, dynamics, acceleration, drift
@article{SVMO_2023_25_4_a7,
     author = {E. A. Mikishanina},
     title = {Nonholonomic mechanical systems on a plane with a variable slope},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {326--341},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a7/}
}
TY  - JOUR
AU  - E. A. Mikishanina
TI  - Nonholonomic mechanical systems on a plane with a variable slope
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2023
SP  - 326
EP  - 341
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a7/
LA  - ru
ID  - SVMO_2023_25_4_a7
ER  - 
%0 Journal Article
%A E. A. Mikishanina
%T Nonholonomic mechanical systems on a plane with a variable slope
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2023
%P 326-341
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a7/
%G ru
%F SVMO_2023_25_4_a7
E. A. Mikishanina. Nonholonomic mechanical systems on a plane with a variable slope. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 4, pp. 326-341. http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a7/

[1] A. V. Borisov, I. S. Mamaev, “Dinamika sanei Chaplygina”, PMM, 73:2 (2009), 219–225 | MR | Zbl

[2] I. A. Bizyaev, “Sani Chaplygina s dvizhuscheisya tochechnoi massoi”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 27:4 (2017), 583–589 | DOI | MR | Zbl

[3] A. V. Karapetyan A. Yu. Shamin, “O dvizhenii sanei Chaplygina po gorizontalnoi ploskosti s sukhim treniem”, PMM, 83:2 (2019), 228–233 | DOI | Zbl

[4] S. A. Chaplygin, “O katanii shara po gorizontalnoi ploskosti”, Matem. sb., 24:1 (1903), 139–168

[5] A. A. Kilin, “The dynamics of Chaplygin ball: The qualitative and computer analysis”, Regul. Chaotic Dyn., 6:3 (2001), 291–306 | DOI | MR | Zbl

[6] E. A. Mikishanina, “Dynamics of the Chaplygin sphere with additional constraint”, Communications in Nonlinear Science and Numerical Simulation, 117 (2023), 106920 | DOI | MR | Zbl

[7] A. V. Borisov, I. S. Mamaev, “Gamiltonovost zadachi Chaplygina o kachenii shara”, Matematicheskie zametki, 70:5 (2001), 793–795 | DOI | MR | Zbl

[8] A. V. Borisov, A. O. Kazakov, I. R. Sataev, “Regulyarnye i khaoticheskie attraktory v negolonomnoi modeli volchka Chaplygina”, Nelineinaya dinamika, 10:3 (2014), 361–380 | Zbl

[9] A. V. Borisov, A. O. Kazakov, I. R. Sataev, “Spiral Chaos in the Nonholonomic Model of a Chaplygin Top”, Regul. Chaotic Dyn., 21:7–8 (2016), 939–954 | DOI | MR | Zbl

[10] A. V. Borisov, I. S. Mamaev, “Motion of Chaplygin ball on an inclined plane”, Doklady Physics, 51:2 (2006), 73–76 | DOI | MR

[11] E. I. Kharlamova, “Kachenie shara po naklonnoi ploskosti”, PMM, 22:4 (1958), 504–509 | Zbl

[12] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “On the Hadamard–Hamel Problem and the Dynamics of Wheeled Vehicles”, Regul. Chaotic Dyn., 20:6 (2015), 752–766 | DOI | MR | Zbl

[13] A. V. Borisov, I. S. Mamaev, “Neodnorodnye sani Chaplygina”, Nelineinaya dinamika, 13:4 (2017), 625–639 | DOI | MR | Zbl

[14] Y. Rocard Y. Línstabilité en mécanique: Automobiles, avions, ponts suspendus. Paris: Masson, 1954., Línstabilité en mécanique: Automobiles, avions, ponts suspendus., Paris: Masson, 1954

[15] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Problema dreifa i vozvraschaemosti pri kachenii shara Chaplygina”, Nelineinaya dinamika, 9:4 (2013), 721–754 | DOI