On the stability of a nonlinear nonautonomous scalar equation with variable delay
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 4, pp. 299-312.

Voir la notice de l'article provenant de la source Math-Net.Ru

The stability problem of a scalar functional differential equation is a classical one. It has been most fully studied for linear equations. Modern research on modeling biological, infectious and other processes leads to the need to determine the qualitative properties of the solutions for more general equations. In this paper we study the stability and the global limit behavior of solutions to a nonlinear one-dimensional (scalar) equation with variable delay with unbounded and bounded right-hand sides. In particular, our research is reduced to a problem on the stability of a non-stationary solution of a nonlinear scalar Lotka-Volterra-type equation, on the stabilization and control of a non-stationary process described by such an equation. The problem posed is considered depending on the delay behavior: is it a bounded differentiable function or a continuous and bounded one. The study is based on the application of the Lyapunov-Krasovsky functionals method as well as the corresponding theorems on the stability of non-autonomous functional differential equations of retarded type with finite delay. Sufficient conditions are derived for uniform asymptotic stability of the zero solution, including global stability, for every continuous initial function. Using the theorem proven by one of the co-authors on the limiting behavior of solutions to a non-autonomous functional differential equation based on the Lyapunov functional with a semidefinite derivative, the properties of the solutions’ attraction to the set of equilibrium states of the equation under study are obtained. In addition, illustrative examples are provided.
Keywords: nonlinear scalar differential equation, variable delay, stability, attraction of solutions, Lyapunov functional
@article{SVMO_2023_25_4_a5,
     author = {J. Kh. Khusanov and A. E. Kaxxorov},
     title = {On the stability of a nonlinear nonautonomous scalar equation with variable delay},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {299--312},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a5/}
}
TY  - JOUR
AU  - J. Kh. Khusanov
AU  - A. E. Kaxxorov
TI  - On the stability of a nonlinear nonautonomous scalar equation with variable delay
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2023
SP  - 299
EP  - 312
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a5/
LA  - en
ID  - SVMO_2023_25_4_a5
ER  - 
%0 Journal Article
%A J. Kh. Khusanov
%A A. E. Kaxxorov
%T On the stability of a nonlinear nonautonomous scalar equation with variable delay
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2023
%P 299-312
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a5/
%G en
%F SVMO_2023_25_4_a5
J. Kh. Khusanov; A. E. Kaxxorov. On the stability of a nonlinear nonautonomous scalar equation with variable delay. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 4, pp. 299-312. http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a5/

[1] A. D. Myshkis, Lineinye differenialnye uravneniya s zapazdyvayuschim argumentom, M., L.: GITTL, 1951, 254 pp. | MR

[2] R. Bellman, K. L. Cooke, Differential-Difference Equations, New York: Academic Press, 1963, 478 pp. | MR | Zbl

[3] N. N. Krasovsky, Stability of Motion, Stanford: Stanford University Press, 1963, 194 pp.

[4] J. K. Hale, Theory of Functional Differential Equations, N. Y.: Springer, 1971, 366 pp. | MR

[5] T. Amemiya, “On the delay-independent stability of a delayed differential equationof 1st order”, J. Math. Anal, and Appl., 142:1 (1989), 13–25 | DOI | MR | Zbl

[6] T. Krisztin, “On stability properties for one-dimensional functional-differential equations”, Funkcial. Ekvac., 34:2 (1991), 241–256 | MR | Zbl

[7] V. V. Malygina, K. M. Chudinov, “Ustoichivost reshenii differentsialnykh uravnenii s neskolkimi peremennymi zapazdyvaniyami. III”, Izvestiya vysshikh uchebnykh zavedenii. Matematika., 2013, no. 8, 44–56 | Zbl

[8] L. Berezansky, E. Braverman, “Stability conditions for scalar delay differential equations with a non-delay term”, Applied Mathematics and Computation, 250:5 (2015), 157–164 | DOI | MR | Zbl

[9] A. Egorov, “On the stability analysis of equations with bounded time-varying delay”, J. IFAC-Papers on Line, 52:18 (2019), 85–90 | DOI

[10] L. Berezansky, E. Braverman, “On exponential stability of linear delay equations with oscillatory coefficients and kernels”, Differential and Integral Equations, 35:9-10 (2022), 559–580 | MR | Zbl

[11] T. Yoneyama, “Uniform stability for one dimensional delay-differential equations with dominant delayed term”, Tohoku Math J., 41:2 (1989), 217–236 | DOI | MR | Zbl

[12] T. A. Burton, “Uniform asymptotic stability in functional differential equations”, Proceedings of the American Mathematical Society, 68:2 (1978), 195–199 | DOI | MR | Zbl

[13] T. Burton, L. Hatvani, “Stability theorems for nonautonomous functional differential equations by Liapunov functionals”, Tohoku Mathematical Journal, Second Series, 41:1 (1989), 65–104 | MR | Zbl

[14] L. Hatvani, “On the asymptotic stability for nonautonomous functional differential equations by Lyapunov functionals”, Transactions of the American Mathematical Society, 354:9 (2002), 3555–3571 | DOI | MR | Zbl

[15] N. V. Pertsev, B. Yu. Pichugin, A. N. Pichugina, “Investigation of solutions to one family of mathematical models of living systems”, Russian Math. (Iz. VUZ)., 61:9 (2017), 54–68 | MR | Zbl

[16] N. V. Pertsev, “Application of differential equations with variable delay in the compartmental models of living systems”, Sib. Zh. Ind. Mat., 24:3 (2021), 55–73 | DOI | MR | Zbl

[17] D. Kh. Khusanov, A. E. Kakhkharov, “Ustoichivost modeli Lotki-Volterra s zapazdyvaniem”, Zhurnal SVMO, 24:2 (2022), 175–184 | Zbl

[18] A. V. Ekimov, A. P. Zhabko, P. V. Yakovlev, “Ustoichivost differentsialno-raznostnykh sistem s lineino vozrastayuschim zapazdyvaniem. II. Cistemy s additivnoi pravoi chastyu”, Vestnik Sankt-Peterburgskogo universiteta. Prikladnaya matematika. Informatika. Protsessy upravleniya, 19:1 (2023), 4–9 | MR

[19] A. S. Andreev, D. Kh. Khusanov, “K metodu funktsionalov Lyapunova v zadache ob asimptoticheskoi ustoichivosti i neustoichivosti”, Differents. uravn., 34:7 (1998), 876–885 | MR | Zbl

[20] D. Kh. Khusanov, O konstruktivnoi i kachestvennoi teorii funktsionalno-differentsialnykh uravnenii, Tashkent: Izd-vo FAN AN RUz, 2002, 256 pp.