Superstructures over Cartesian products of orientation-preserving rough circle transformations
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 4, pp. 273-283.

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the constructions for obtaining flows on a manifold is building a superstructure over a cascade. In this case, the flow is non-singular, that is, it has no fixed points. C. Smale showed that superstructures over conjugate diffeomorphisms are topologically equivalent. The converse statement is not generally true, but under certain assumptions the conjugacy of diffeomorphisms is tantamount to equivalence of superstructures. Thus, J. Ikegami showed that the criterion works in the case when a diffeomorphism is given on a manifold whose fundamental group does not admit an epimorphism into the group $\mathbb Z$. He also constructed examples of non-conjugate diffeomorphisms of a circle whose superstructures are equivalent. In the work of I. V. Golikova and O. V. Pochinka superstructures over diffeomorphisms of circles are examined. It is also proven in this paper that the complete invariant of the equivalence of superstructures over orientation-preserving diffeomorphisms is the equality of periods for periodic points generating their diffeomorphisms. For the other side, it is known from the result of A.G. Mayer that the coincidence of rotation numbers is also necessary for conjugacy of orientation-preserving diffeomorphisms. At the same time, superstructures over orientation-changing diffeomorphisms of circles are equivalent if and only if the corresponding diffeomorphisms of circles are topologically conjugate. Work of S. Kh. Zinina and P. I. Pochinka proved that superstructures over orientation-changing Cartesian products of diffeomorphisms of circles are equivalent if and only if the corresponding diffeomorphisms of tori are topologically conjugate. In this paper a classification result is obtained for superstructures over Cartesian products of orientation-preserving diffeomorphisms of circles.
Keywords: manifold, superstructure over a diffeomorphism, orientation-preserving diffeomorphism of a circle, number of rotations, Cartesian product of diffeomorphisms
@article{SVMO_2023_25_4_a3,
     author = {S. Kh. Zinina and A. A. Nozdrinov and V. I. Shmukler},
     title = {Superstructures over {Cartesian} products of orientation-preserving rough circle transformations},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {273--283},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a3/}
}
TY  - JOUR
AU  - S. Kh. Zinina
AU  - A. A. Nozdrinov
AU  - V. I. Shmukler
TI  - Superstructures over Cartesian products of orientation-preserving rough circle transformations
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2023
SP  - 273
EP  - 283
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a3/
LA  - ru
ID  - SVMO_2023_25_4_a3
ER  - 
%0 Journal Article
%A S. Kh. Zinina
%A A. A. Nozdrinov
%A V. I. Shmukler
%T Superstructures over Cartesian products of orientation-preserving rough circle transformations
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2023
%P 273-283
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a3/
%G ru
%F SVMO_2023_25_4_a3
S. Kh. Zinina; A. A. Nozdrinov; V. I. Shmukler. Superstructures over Cartesian products of orientation-preserving rough circle transformations. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 4, pp. 273-283. http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a3/

[1] Golikova I. V., Pochinka O. V., “Nadstroiki nad grubymi preobrazovaniyami okruzhnosti”, Ogarev-Online, 2020, no. 13 | Zbl

[2] E. Ya. Gurevich, S. Kh. Zinina, “O topologicheskoi klassifikatsii gradientno-podobnykh sistem na poverkhnostyakh, yavlyayuschikhsya lokalnymi pryamymi proizvedeniyami”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 17:1 (2015), 37-47 | Zbl

[3] G. Ikegami, “On classification of dynamical systems with cross-sections”, Osaka Journal of Mathematics, 6:2 (1969), 419–433 | MR | Zbl

[4] A. Hatcher, Notes on basic 3-manifold topology, 2007, 61 pp.

[5] V. Kruglov, D. Malyshev, O. Pochinka, “On Algorithms that Effectively Distinguish Gradient-Like Dynamics on Surfaces”, Arnold Mathematical Journal, 4:3-4 (2018), 483–504 | DOI | MR | Zbl

[6] A. G. Maier, “Gruboe preobrazovanie okruzhnosti v okruzhnost”, Uchen. zap. GGU, 1939, no. 12, 215-229

[7] M. M. Peixoto, “On the classification of flows on 2-manifolds”, Dynamical systems, 1973, 389–419 | MR | Zbl

[8] S. Kh. Zinina, P. I. Pochinka, “Klassifikatsiya nadstroek nad dekartovymi proizvedeniyami menyayuschikh orientatsiyu diffeomorfizmov okruzhnosti”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 24:1 (2022), 54-65 | DOI | MR | Zbl

[9] D. Rolfsen, “Knots and links”, Mathematics Lecture Series 7, 1990, Providence: AMS Chelsea Publ., 450 pp. | MR

[10] S. Smale, “Stable manifolds for differential equations and diffeomorphisms”, Ann. Scuola Norm. Sup., 17:3 (1963), 97-116 | MR | Zbl

[11] S. Smale, “Differentiate dynamical systems”, Bull. Amer. Math. Soc., 73 (1967), 747-817 | DOI | MR | Zbl