Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2023_25_4_a2, author = {K. A. Dragunova and N. Nikbakht and I. D. Remizov}, title = {Numerical study of the rate of convergence of {Chernoff} approximations to solutions of the heat equation}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {255--272}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a2/} }
TY - JOUR AU - K. A. Dragunova AU - N. Nikbakht AU - I. D. Remizov TI - Numerical study of the rate of convergence of Chernoff approximations to solutions of the heat equation JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2023 SP - 255 EP - 272 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a2/ LA - ru ID - SVMO_2023_25_4_a2 ER -
%0 Journal Article %A K. A. Dragunova %A N. Nikbakht %A I. D. Remizov %T Numerical study of the rate of convergence of Chernoff approximations to solutions of the heat equation %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2023 %P 255-272 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a2/ %G ru %F SVMO_2023_25_4_a2
K. A. Dragunova; N. Nikbakht; I. D. Remizov. Numerical study of the rate of convergence of Chernoff approximations to solutions of the heat equation. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 4, pp. 255-272. http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a2/
[1] Ya.A. Butko, “The method of Chernoff approximation”, Springer Proceedings in Mathematics and Statistics, 325, 2020, 19–46 | DOI | MR | Zbl
[2] Chernoff P.R., “Note on product formulas for operator semigroups.”, J. Functional Analysis, 2:2 (1968), 238-242 | DOI | MR | Zbl
[3] K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations., Springer, NY, 1999, 589 pp. | DOI | MR
[4] I.D. Remizov, “Feynman and Quasi-Feynman Formulas for Evolution Equations”, Doklady Mathematics, 96 (2017), 433-437 | DOI | MR
[5] O. G. Smolyanova, E. T. Shavgulidze, Kontinualnye integraly, MGU, M., 1990, 150 pp.
[6] Kalmetev R. Sh. ,Orlov Yu. N.,Sakbaev V. Zh., “Iteratsii Chernova kak metod usredneniya sluchainykh affinnykh preobrazovanii”, Zh. vychisl. matem. i matem. fiz., 62:6 (2022), 1030-1041 | DOI | MR | Zbl
[7] I. D. Remizov, “Quasi-Feynman formulas – a method of obtaining the evolution operator for the Schrödinger equation”, Journal of Functional Analysis, 270:12 (2016), 4540–4557 | DOI | MR | Zbl
[8] V.A. Zagrebnov, “Notes on the Chernoff product formula”, Journal of Functional Analysis, 279:7 (2020) | DOI | MR | Zbl
[9] A.V. Vedenin, “Fast converging Chernoff approximations to solution of a parabolic differential equation on a real line.”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 24:3 (2022), 280-288 | DOI | Zbl
[10] O.E. Galkin, I.D. Remizov, Upper and lower estimates for rate of convergence in the Chernoff product formula for semigroups of operators | DOI
[11] A.V. Vedenin , V.S. Voevodkin, V.D. Galkin , E.Yu. Karatetskaya ,I.D. Remizov, “Speed of Convergence of Chernoff Approximations to Solutions of Evolution Equations.”, Math. Notes, 108:3 (2020), 451–456 | DOI | MR | Zbl
[12] K. A. Dragunova , A. A. Garashenkova , N. Nikbakht , I. D. Remizov, Numerical Study of the Rate of Convergence of Chernoff Approximations to Solutions of the Heat Equation with full list of illustrations and Python source code | DOI | Zbl
[13] I.D. Remizov, “On estimation of error in approximations provided by Chernoff 's product formula.”, International Conference “ShilnikovWorkshop-2018” dedicated to the memory of outstanding Russian mathematician Leonid Pavlovich Shilnikov (1934-2011) (December 17-18, 2018), Lobachevsky State University, Nizhny Novgorod, 38-41 | MR
[14] O. E. Galkin, I. D. Remizov, “Rate of Convergence of Chernoff Approximations of operator $C_0$-semigroups”, Mathematical Notes, 111:2 (2022), 305—307 | DOI | MR
[15] P.S. Prudnikov, Speed of convergence of Chernoff approximations for two model examples: heat equation and transport equation | DOI
[16] Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Rate of convergence of Feynman approximations of semigroups generated by the oscillator Hamiltonian”, Theoretical and Mathematical Physics, 172:1 (2012), 987–1000 | DOI | MR | Zbl
[17] I. D. Remizov, “Approximations to the solution of Cauchy problem for a linear evolution equation via the space shift operator (second-order equation example)”, Applied Mathematics and Computation, 328 (2018), 243-246 | DOI | MR | Zbl