Estimating the Lebesgue constant for the Chebyshev distribution of nodes
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 4, pp. 242-254.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper an approach to estimation of the Lebesgue constant for the Lagrange interpolation process with nodes in the zeros of Chebyshev polynomials of the first kind is done. Two-sided estimation of this constant is carried out by using the logarithmic derivative of the Euler gamma function and of the Riemann zeta function. The choice of interpolation nodes is due to the fact that with a fixed number of Chebyshev nodes, the Lebesgue constant tends to its minimum value, thus reducing the error of algebraic interpolation and providing less sensitivity to rounding errors. The expressions for the upper and the lower bounds of this constant are represented as finite sums of an asymptotic alternating series. Based on the expressions obtained, these boundaries are calculated depending on the number of nodes of the interpolation process. The error of each of the boundaries’ value is estimated based on the first discarded term in the corresponding asymptotic series. The results of the calculations are presented in tables showing deviations of the Lebesgue constant from its lower and upper estimated bounds. Dependence of the values’ errors on the number of Chebyshev nodes is depicted in these tables as well. It is numerically shown that with an increase in the number of these nodes, the estimation boundaries rapidly get close to each other. The presented results can be used in the theory of interpolation to estimate the norm of the operator matching a function to its interpolation polynomial and to estimate a deviation of the constructed perturbed polynomial from the unperturbed one.
Mots-clés : polynomial approximation, Lebesgue constant
Keywords: Chebyshev nodes
@article{SVMO_2023_25_4_a1,
     author = {O. V. Germider and V. N. Popov},
     title = {Estimating the {Lebesgue} constant for the {Chebyshev} distribution of nodes},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {242--254},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a1/}
}
TY  - JOUR
AU  - O. V. Germider
AU  - V. N. Popov
TI  - Estimating the Lebesgue constant for the Chebyshev distribution of nodes
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2023
SP  - 242
EP  - 254
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a1/
LA  - ru
ID  - SVMO_2023_25_4_a1
ER  - 
%0 Journal Article
%A O. V. Germider
%A V. N. Popov
%T Estimating the Lebesgue constant for the Chebyshev distribution of nodes
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2023
%P 242-254
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a1/
%G ru
%F SVMO_2023_25_4_a1
O. V. Germider; V. N. Popov. Estimating the Lebesgue constant for the Chebyshev distribution of nodes. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 4, pp. 242-254. http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a1/

[1] A. A. Privalov, Teoriya interpolirovaniya funktsii. Kniga 1, Izdatelstvo Sarat. un-ta, Saratov, 1990, 230 pp.

[2] V. A. Kim, “Tochnye konstanty Lebega dlya interpolyatsionnykh ogranichennykh $L$-splainov tretego poryadka”, Sib. matem. zhurn., 51:2 (2010), 330–341 | DOI | MR

[3] B. A. Ibrahimoǧlu, “Lebesgue functions and Lebesgue constants in polynomial interpolation”, Journal of Inequalities and Applications, 93 (2016), 1-15 | MR

[4] L. Brutman, “On the Lebesgue Function for Polynomial Interpolation”, SIAM J. Numer. Anal., 15:4 (1978), 694-704 | DOI | MR | Zbl

[5] R. Gunttner, “Evaluation of Lebesgue constants”, SIAM J. Numer. Anal., 17:4 (1980), 512-520 | DOI | MR | Zbl

[6] R. Gunttner, “Note on the lower estimate of optimal Lebesgue constants”, Acta Math. Hungar., 65:4 (1994), 313-317 | DOI | MR | Zbl

[7] J. Mason, D. Handscomb, Chebyshev polynomials, Chapman and Hall/CRC, N. Y., 2002, 360 pp. | MR

[8] M. J. D. Powell, “On the maximum errors of polynomial approximations defined by interpolation and by least squares criteria”, Comput. J., 9 (1967), 404-407 | DOI | MR | Zbl

[9] M. Abramovits, I. Stigan, Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, Moskva, 1979, 832 pp.

[10] Beitman G., Erdeii A., Vysshie transtsendentnye funktsii. T. 2., Nauka, Moskva, 1974, 296 pp.

[11] O. Espinosa, V. Moll, “A generalized polygamma function”, Integral Transforms and Special Functions, 15:2 (2004), 101-115 | DOI | MR | Zbl

[12] Yu. Lyuk, Spetsialnye matematicheskie funktsii i ikh approksimatsii, Mir, Moskva, 1980, 608 pp.

[13] H. Sherwood, “Sums of power of integers and Bernoulli numbers”, The Mathematical Gazette, 54 (1970), 272-274 | DOI | MR | Zbl

[14] V. K. Dzjadik, V. V. Ivanov, “On asymptotics and estimates for the uniform norms of the Lagrange interpolation polynomials corresponding to the Chebyshev nodal points”, Analysis Mathematica, 9:2 (1983), 85-97 | DOI | MR | Zbl