Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2023_25_4_a1, author = {O. V. Germider and V. N. Popov}, title = {Estimating the {Lebesgue} constant for the {Chebyshev} distribution of nodes}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {242--254}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a1/} }
TY - JOUR AU - O. V. Germider AU - V. N. Popov TI - Estimating the Lebesgue constant for the Chebyshev distribution of nodes JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2023 SP - 242 EP - 254 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a1/ LA - ru ID - SVMO_2023_25_4_a1 ER -
%0 Journal Article %A O. V. Germider %A V. N. Popov %T Estimating the Lebesgue constant for the Chebyshev distribution of nodes %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2023 %P 242-254 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a1/ %G ru %F SVMO_2023_25_4_a1
O. V. Germider; V. N. Popov. Estimating the Lebesgue constant for the Chebyshev distribution of nodes. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 4, pp. 242-254. http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a1/
[1] A. A. Privalov, Teoriya interpolirovaniya funktsii. Kniga 1, Izdatelstvo Sarat. un-ta, Saratov, 1990, 230 pp.
[2] V. A. Kim, “Tochnye konstanty Lebega dlya interpolyatsionnykh ogranichennykh $L$-splainov tretego poryadka”, Sib. matem. zhurn., 51:2 (2010), 330–341 | DOI | MR
[3] B. A. Ibrahimoǧlu, “Lebesgue functions and Lebesgue constants in polynomial interpolation”, Journal of Inequalities and Applications, 93 (2016), 1-15 | MR
[4] L. Brutman, “On the Lebesgue Function for Polynomial Interpolation”, SIAM J. Numer. Anal., 15:4 (1978), 694-704 | DOI | MR | Zbl
[5] R. Gunttner, “Evaluation of Lebesgue constants”, SIAM J. Numer. Anal., 17:4 (1980), 512-520 | DOI | MR | Zbl
[6] R. Gunttner, “Note on the lower estimate of optimal Lebesgue constants”, Acta Math. Hungar., 65:4 (1994), 313-317 | DOI | MR | Zbl
[7] J. Mason, D. Handscomb, Chebyshev polynomials, Chapman and Hall/CRC, N. Y., 2002, 360 pp. | MR
[8] M. J. D. Powell, “On the maximum errors of polynomial approximations defined by interpolation and by least squares criteria”, Comput. J., 9 (1967), 404-407 | DOI | MR | Zbl
[9] M. Abramovits, I. Stigan, Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, Moskva, 1979, 832 pp.
[10] Beitman G., Erdeii A., Vysshie transtsendentnye funktsii. T. 2., Nauka, Moskva, 1974, 296 pp.
[11] O. Espinosa, V. Moll, “A generalized polygamma function”, Integral Transforms and Special Functions, 15:2 (2004), 101-115 | DOI | MR | Zbl
[12] Yu. Lyuk, Spetsialnye matematicheskie funktsii i ikh approksimatsii, Mir, Moskva, 1980, 608 pp.
[13] H. Sherwood, “Sums of power of integers and Bernoulli numbers”, The Mathematical Gazette, 54 (1970), 272-274 | DOI | MR | Zbl
[14] V. K. Dzjadik, V. V. Ivanov, “On asymptotics and estimates for the uniform norms of the Lagrange interpolation polynomials corresponding to the Chebyshev nodal points”, Analysis Mathematica, 9:2 (1983), 85-97 | DOI | MR | Zbl