On logarithmic H\"older condition and local extrema of power Takagi functions
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 4, pp. 223-241.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies one class of real functions, which we call Takagi power functions. Such functions have one positive real parameter; they are continuous, but nowhere differentiable, and are given on a real line using functional series. These series are similar to the series defining the continuous, nowhere differentiable Takagi function described in 1903. For each parameter value, we derive a functional equation for functions related to Takagi power functions. Then, using this equation, we obtain an accurate two-sides estimate for the functions under study. Next, we prove that for parameter values not exceeding 1, Takagi power functions satisfy the Hölder logarithmic condition, and find the smallest value of the constant in this condition. As a result, we get the usual Hölder condition, which follows from the logarithmic Hölder condition. Moreover, for parameter values ranging from 0 to 1, we investigate the behavior of Takagi power functions in the neighborhood of their global maximum points. Then we show that the functions under study reach a strict local minimum on the real axis at binary-rational points, and only at them. Finally, we describe the set of points at which our functions reach a strict local maximum. The benefit of our research lies in the development of methods applicable to continuous functions that cannot be differentiated anywhere. This can significantly expand the set of functions being studied.
Keywords: power Takagi function, functional equation, local extrema
Mots-clés : logarithmic Hölder condition
@article{SVMO_2023_25_4_a0,
     author = {O. E. Galkin and S. Yu. Galkina and O. M. Mulyar},
     title = {On logarithmic {H\"older} condition and local extrema of power {Takagi} functions},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {223--241},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a0/}
}
TY  - JOUR
AU  - O. E. Galkin
AU  - S. Yu. Galkina
AU  - O. M. Mulyar
TI  - On logarithmic H\"older condition and local extrema of power Takagi functions
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2023
SP  - 223
EP  - 241
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a0/
LA  - ru
ID  - SVMO_2023_25_4_a0
ER  - 
%0 Journal Article
%A O. E. Galkin
%A S. Yu. Galkina
%A O. M. Mulyar
%T On logarithmic H\"older condition and local extrema of power Takagi functions
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2023
%P 223-241
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a0/
%G ru
%F SVMO_2023_25_4_a0
O. E. Galkin; S. Yu. Galkina; O. M. Mulyar. On logarithmic H\"older condition and local extrema of power Takagi functions. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 4, pp. 223-241. http://geodesic.mathdoc.fr/item/SVMO_2023_25_4_a0/

[1] Allaart P. C., Kawamura K., “The Takagi function: a survey”, Real Anal. Exchange., 37:1 (2011/12), 1–54 | DOI | MR

[2] Lagarias J.C., “The Takagi function and its properties”, RIMS Kokyuroku bessatsu B34: Functions and number theory and their probabilistic aspects, 34 (2012), 153–189, Kyoto | MR

[3] Galkin O.E., Galkina S.Yu., Tronov A.A., “O globalnykh ekstremumakh stepennykh funktsii Takagi”, Zhurnal Srednevolzhskogo matematicheskogo obschestva., 25:2 (2023), 22–36 | DOI

[4] Medvedev F. A., Ocherki istorii teorii funktsii deistvitelnogo peremennogo, M. Nauka, 1975, 248 pp.

[5] Okorokov V.A., Sandrakova E.V., Fraktaly v fundamentalnoi fizike. Fraktalnye svoistva mnozhestvennogo obrazovaniya chastits i topologiya vyborki, M. MIFI, 2009, 460 pp.

[6] Thim J., “Continuous nowhere differentiable functions. Master's thesis”, LuleåUniversity of Technology., 2003, Luleå, Sweden, 98 pp.

[7] Heurteaux Y., “Weierstrass functions in Zygmund's class”, Proc. Amer. Math. Soc., 133 (2005), 2711–2720 | DOI | MR | Zbl

[8] Fujita Y., Hamamuki N., Siconolfi A., Yamaguchi N., “A class of nowhere differentiable functions satisfying some concavity-type estimate”, Acta Mathematica Hungarica., 160 (2020), 343–359 | DOI | MR | Zbl

[9] Posey E.E., Vaughan J.E., “Extrema and nowhere differentiable functions”, Rocky mountain journal of mathematics., 16 (1986), 661–668 | DOI | MR | Zbl

[10] Kahane J.-P., “Sur l'exemple, donné par M. de Rham, d'une fonction continue sans dérivée”, Enseignement Math., 5 (1959), 53–57 | DOI | MR | Zbl

[11] Banach S., “\:Uber die Baire'sche Kategorie gewisser Funktionenmengen”, Studia Math., 3:3 (1931), 174–179 | DOI | Zbl

[12] Allaart P. C., Kawamura K., “Extreme values of some continuous nowhere differentiable functions”, Math. Proc. of the Cambridge Phil. Soc., 140:2 (2006), 269–295 | DOI | MR | Zbl

[13] Galkin O.E., Galkina S.Yu., “Primenenie krainikh pod- i nadargumentov, vypuklykh i vognutykh obolochek dlya poiska globalnykh ekstremumov”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki., 29:4 (2019), 483–500 | DOI | MR | Zbl

[14] Galkin O.E., Galkina S.Yu., “Globalnye ekstremumy funktsii Delanzha, otsenki tsifrovykh summ i vognutye funktsii”, Matem. sb., 211:3 (2020), 32–70 | DOI | MR | Zbl

[15] Denjoy A., Felix L., Montel P., “Henri Lebesgue, le savant, le professeur, l'homme”, Enseignement Math., 3 (1957), 1–18 | MR | Zbl

[16] Makogin V., Mishura Yu., “Fractional integrals, derivatives and integral equations with weighted Takagi–Landsberg functions”, Nonlinear Analysis: Modelling and Control, 25:6 (2020), 1079–1106 | DOI | MR | Zbl

[17] Yu H., “Weak tangent and level sets of Takagi functions”, Monatshefte für Mathematik, 1192:6 (2020), 249–264 | DOI | MR

[18] Han X., Schied A., Zhang Z., “A limit theorem for Bernoulli convolutions and the $\Phi$-variation of functions in the Takagi class”, J. Theor. Probab., 35 (2022), 2853–2878 | DOI | MR | Zbl

[19] Krüppel M., “Takagi's continuous nowhere differentiable function and binary digital sums”, Rostock. Math. Kolloq., 63 (2008), 37–54 | MR | Zbl

[20] Shidfar A., Sabetfakhri K., “On the continuity of van der Waerden's function in the Hölder sense”, Amer. Math. Monthly, 93:5 (1986), 375–376 | MR | Zbl

[21] Krüppel M., “On the extrema and the improper derivatives of Takagi's continuous nowhere differentiable function”, Rostock. Math. Kolloq., 62 (2007), 41–59 | MR | Zbl

[22] Házy A., Páles Zs., “On approximately t-convex functions”, Publ. Math. Debrecen., 66:3–4 (2005), 489–501 | DOI | MR | Zbl