Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2023_25_3_a0, author = {E. V. Desyaev and P. A. Shamanaev}, title = {On periodic solutions of linear inhomogeneous differential equations with a small perturbation at the derivative}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {111--122}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_3_a0/} }
TY - JOUR AU - E. V. Desyaev AU - P. A. Shamanaev TI - On periodic solutions of linear inhomogeneous differential equations with a small perturbation at the derivative JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2023 SP - 111 EP - 122 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2023_25_3_a0/ LA - ru ID - SVMO_2023_25_3_a0 ER -
%0 Journal Article %A E. V. Desyaev %A P. A. Shamanaev %T On periodic solutions of linear inhomogeneous differential equations with a small perturbation at the derivative %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2023 %P 111-122 %V 25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2023_25_3_a0/ %G ru %F SVMO_2023_25_3_a0
E. V. Desyaev; P. A. Shamanaev. On periodic solutions of linear inhomogeneous differential equations with a small perturbation at the derivative. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 3, pp. 111-122. http://geodesic.mathdoc.fr/item/SVMO_2023_25_3_a0/
[1] A. M. Lyapunov, “Sur les figures d'equilibre peu differentes des ellipsoides d'une masse liquide homogene donee d'un mouvement de rotation”, Academician Sciences, St. Petersburg, 1906
[2] E. Schmidt, “Zur Theorie linearen und nichtlinearen Integral gleichungen”, Math. Ann., 65 (1908), 370-399 | DOI | MR
[3] M. M. Vaynberg, V. A. Trenogin, Teoriya vetvleniya resheniy nelineynykh uravneniy [Branching theory for solutions to nonlinear equations], Nauka Publ., Moscow, 1968, 528 pp. (In Russ.) | MR
[4] B. V. Loginov, “Determination of the branching equation by its group symmetry - Andronov-Hopf bifurcation”, Nonlinear Analysis: TMA, 28:12 (1997), 2035-2047 | DOI | MR
[5] B. V. Loginov, L. R. Kim-Tyan, Yu. B. Rousak, “On the stability of periodic solutions for differential equations with a Fredholm operator at the highest derivative”, Nonlinear analysis, 67:5 (2007), 1570-1585 | DOI | MR | Zbl
[6] Konopleva I. V., Loginov B. V., Rusak Yu. B., “Simmetriya i potentsialnost uravnenii razvetvleniya v kornevykh podprostranstvakh v neyavno zadannykh statsionarnykh i dinamicheskikh bifurkatsionnykh zadachakh”, Izvestiya vysshikh uchebnykh zavedenii. Severo-Kavkazskii region. Seriya: Estestvennye nauki., 2009, 115-124 (In Russ.)
[7] Kyashkin A. A., Loginov B. V., Shamanaev P. A., “O vetvlenii periodicheskikh reshenii lineinykh neodnorodnykh differentsialnykh uravnenii c vyrozhdennym ili tozhdestvennym operatorom pri proizvodnoi i vozmuscheniem v vide malogo lineinogo slagaemogo”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 18:1 (2016), 45–53 (In Russ.) | Zbl
[8] Shamanaev P. A., Loginov B. V. O, “O vetvlenii periodicheskikh reshenii lineinykh neodnorodnykh differentsialnykh uravnenii c vozmuscheniem v vide malogo lineinogo slagaemogo s zapazdyvayuschim argumentom”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 18:3 (2016), 61–69 (In Russ.) | Zbl
[9] N. Sidorov, B. Loginov, M. Falaleev, Lyapunov-Schmidt methods in nonlinear analysis and applications, Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 2002, 550 pp. | MR