On periodic solutions of linear inhomogeneous differential equations with a small perturbation at the derivative
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 3, pp. 111-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a Banach space, using branching theory methods, a periodic solution of a linear inhomogeneous differential equation with a small perturbation at the derivative (perturbed equation) is constructed. Under the condition of presence of a complete generalized Jordan set, the uniqueness of this periodic solution is proven. It is shown that when a small parameter is equal to zero and certain conditions are met, the periodic solution of the perturbed equation transforms into the family of periodic solutions of the unperturbed equation. The result is obtained by representing the perturbed equation as an operator equation in Banach space and applying the theory of generalized Jordan sets and modified Lyapunov-Schmidt method. As is known, the latter method reduces the original problem to study of the Lyapunov-Schmidt resolving system in the root subspace. In this case, the resolving system splits into two inhomogeneous systems of linear algebraic equations, that have unique solutions at $\varepsilon \neq 0$, and $2n$-parameter families of real solutions at $\varepsilon=0$, respectively.
Keywords: differential equations in Banach spaces, small parameter at the derivative, modified Lyapunov-Schmidt method, generalized Jordan sets, Lyapunov-Schmidt resolving system in the root subspace
@article{SVMO_2023_25_3_a0,
     author = {E. V. Desyaev and P. A. Shamanaev},
     title = {On periodic solutions of linear inhomogeneous differential equations with a small perturbation at the derivative},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {111--122},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_3_a0/}
}
TY  - JOUR
AU  - E. V. Desyaev
AU  - P. A. Shamanaev
TI  - On periodic solutions of linear inhomogeneous differential equations with a small perturbation at the derivative
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2023
SP  - 111
EP  - 122
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2023_25_3_a0/
LA  - ru
ID  - SVMO_2023_25_3_a0
ER  - 
%0 Journal Article
%A E. V. Desyaev
%A P. A. Shamanaev
%T On periodic solutions of linear inhomogeneous differential equations with a small perturbation at the derivative
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2023
%P 111-122
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2023_25_3_a0/
%G ru
%F SVMO_2023_25_3_a0
E. V. Desyaev; P. A. Shamanaev. On periodic solutions of linear inhomogeneous differential equations with a small perturbation at the derivative. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 3, pp. 111-122. http://geodesic.mathdoc.fr/item/SVMO_2023_25_3_a0/

[1] A. M. Lyapunov, “Sur les figures d'equilibre peu differentes des ellipsoides d'une masse liquide homogene donee d'un mouvement de rotation”, Academician Sciences, St. Petersburg, 1906

[2] E. Schmidt, “Zur Theorie linearen und nichtlinearen Integral gleichungen”, Math. Ann., 65 (1908), 370-399 | DOI | MR

[3] M. M. Vaynberg, V. A. Trenogin, Teoriya vetvleniya resheniy nelineynykh uravneniy [Branching theory for solutions to nonlinear equations], Nauka Publ., Moscow, 1968, 528 pp. (In Russ.) | MR

[4] B. V. Loginov, “Determination of the branching equation by its group symmetry - Andronov-Hopf bifurcation”, Nonlinear Analysis: TMA, 28:12 (1997), 2035-2047 | DOI | MR

[5] B. V. Loginov, L. R. Kim-Tyan, Yu. B. Rousak, “On the stability of periodic solutions for differential equations with a Fredholm operator at the highest derivative”, Nonlinear analysis, 67:5 (2007), 1570-1585 | DOI | MR | Zbl

[6] Konopleva I. V., Loginov B. V., Rusak Yu. B., “Simmetriya i potentsialnost uravnenii razvetvleniya v kornevykh podprostranstvakh v neyavno zadannykh statsionarnykh i dinamicheskikh bifurkatsionnykh zadachakh”, Izvestiya vysshikh uchebnykh zavedenii. Severo-Kavkazskii region. Seriya: Estestvennye nauki., 2009, 115-124 (In Russ.)

[7] Kyashkin A. A., Loginov B. V., Shamanaev P. A., “O vetvlenii periodicheskikh reshenii lineinykh neodnorodnykh differentsialnykh uravnenii c vyrozhdennym ili tozhdestvennym operatorom pri proizvodnoi i vozmuscheniem v vide malogo lineinogo slagaemogo”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 18:1 (2016), 45–53 (In Russ.) | Zbl

[8] Shamanaev P. A., Loginov B. V. O, “O vetvlenii periodicheskikh reshenii lineinykh neodnorodnykh differentsialnykh uravnenii c vozmuscheniem v vide malogo lineinogo slagaemogo s zapazdyvayuschim argumentom”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 18:3 (2016), 61–69 (In Russ.) | Zbl

[9] N. Sidorov, B. Loginov, M. Falaleev, Lyapunov-Schmidt methods in nonlinear analysis and applications, Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 2002, 550 pp. | MR