Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2022_24_3_a5, author = {M. E. Ladonkina and Yu. A. Poveschenko and O. R. Rahimly and H. Zhang}, title = {Theoretical study of stability of nodal completely conservative difference schemes with viscous filling for gas dynamics equations in {Euler} variables}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {317--330}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2022_24_3_a5/} }
TY - JOUR AU - M. E. Ladonkina AU - Yu. A. Poveschenko AU - O. R. Rahimly AU - H. Zhang TI - Theoretical study of stability of nodal completely conservative difference schemes with viscous filling for gas dynamics equations in Euler variables JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2022 SP - 317 EP - 330 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2022_24_3_a5/ LA - ru ID - SVMO_2022_24_3_a5 ER -
%0 Journal Article %A M. E. Ladonkina %A Yu. A. Poveschenko %A O. R. Rahimly %A H. Zhang %T Theoretical study of stability of nodal completely conservative difference schemes with viscous filling for gas dynamics equations in Euler variables %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2022 %P 317-330 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2022_24_3_a5/ %G ru %F SVMO_2022_24_3_a5
M. E. Ladonkina; Yu. A. Poveschenko; O. R. Rahimly; H. Zhang. Theoretical study of stability of nodal completely conservative difference schemes with viscous filling for gas dynamics equations in Euler variables. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 24 (2022) no. 3, pp. 317-330. http://geodesic.mathdoc.fr/item/SVMO_2022_24_3_a5/