Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2022_24_3_a5, author = {M. E. Ladonkina and Yu. A. Poveschenko and O. R. Rahimly and H. Zhang}, title = {Theoretical study of stability of nodal completely conservative difference schemes with viscous filling for gas dynamics equations in {Euler} variables}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {317--330}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2022_24_3_a5/} }
TY - JOUR AU - M. E. Ladonkina AU - Yu. A. Poveschenko AU - O. R. Rahimly AU - H. Zhang TI - Theoretical study of stability of nodal completely conservative difference schemes with viscous filling for gas dynamics equations in Euler variables JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2022 SP - 317 EP - 330 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2022_24_3_a5/ LA - ru ID - SVMO_2022_24_3_a5 ER -
%0 Journal Article %A M. E. Ladonkina %A Yu. A. Poveschenko %A O. R. Rahimly %A H. Zhang %T Theoretical study of stability of nodal completely conservative difference schemes with viscous filling for gas dynamics equations in Euler variables %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2022 %P 317-330 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2022_24_3_a5/ %G ru %F SVMO_2022_24_3_a5
M. E. Ladonkina; Yu. A. Poveschenko; O. R. Rahimly; H. Zhang. Theoretical study of stability of nodal completely conservative difference schemes with viscous filling for gas dynamics equations in Euler variables. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 24 (2022) no. 3, pp. 317-330. http://geodesic.mathdoc.fr/item/SVMO_2022_24_3_a5/
[1] A. A. Samarskii, Yu. P. Popov, Raznostnye metody resheniya zadach gazovoi dinamiki, Nauka, Moskva, 1980, 352 pp.
[2] Yu. P. Popov, A. A. Samarskii, “Polnostyu konservativnye raznostnye skhemy”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 953–958
[3] A.V. Kuzmin, V.L. Makarov, “Ob odnom algoritme postroeniya polnostyu konservativnykh raznostnykh skhem”, ZhVMiMF., 22:1 (1982), 123-132
[4] A.V. Kuzmin, V.L. Makarov, G.V. Meladze, “Ob odnoi polnostyu konservativnoi raznostnoi skheme dlya uravneniya gazovoi dinamiki v peremennykh eilera”, ZhVMiMF., 20:1 (1980), 171-181
[5] V.M. Goloviznin, I.V. Krayushkin, M.A. Ryazanov, A.A. Samarskii, “Dvumernye polnostyu konservativnye raznostnye skhemy gazovoi dinamiki s raznesennymi skorostyami”, Preprinty IPM im M.V. Keldysha, 1983, 105
[6] A. V. Koldoba, Yu. A. Poveschenko, Yu. P. Popov, “Dvukhsloinye polnostyu konservativnye raznostnye skhemy dlya uravnenii gazovoi dinamiki v peremennykh Eilera”, Zh. vychisl. matem. i matem. fiz., 27:5 (1987), 779–784
[7] A. V. Koldoba, O. A. Kuznetsov, Yu. A. Poveschenko, Yu. P. Popov, “Ob odnom podkhode k raschetu zadach gazovoi dinamiki s peremennoi massoi kvazichastitsy”, Preprinty IPM im M.V. Keldysha, 1985, 57
[8] A.V. Koldoba, Yu.A. Poveschenko, “Polnostyu konservativnye raznostnye skhemy dlya uravnenii gazovoi dinamiki pri nalichii istochnikov massy”, Preprinty IPM im M.V. Keldysha, 1982, 160
[9] A.A. Samarskii, A.V. Koldobav, Yu.A. Poveschenko, V.F. Tishkin, A.P. Favorskii, Raznostnye skhemy na neregulyarnykh setkakh, ZAO «Kriterii», Minsk, 1996, 275 pp.
[10] A. V. Koldoba, Yu. A. Poveschenko, I. V. Gasilova, E. Yu. Dorofeeva, “Raznostnye skhemy metoda opornykh operatorov dlya uravnenii teorii uprugosti”, Matem. modelirovanie, 24:12 (2012), 86–96 | MR
[11] Yu. A. Poveschenko, V. O. Podryga, Yu. S. Sharova, “Integralno-soglasovannye metody rascheta samogravitiruyuschikh i magnitogidrodinamicheskikh yavlenii”, Preprinty IPM im. M. V. Keldysha, 2018, 160, 21 pp. | DOI
[12] Yu.V. Popov, I.V. Fryazinov, Metoda adaptivnoi iskusstvennoi vyazkosti chislennogo resheniya uravnenii gazovoi dinamiki, «Krasand», M., 2014, 288 pp.
[13] Yu. A. Poveschenko, M. E. Ladonkina, V. O. Podryga, O. R. Ragimli, Yu. S. Sharova, “Ob odnoi dvukhsloinoi polnostyu konservativnoi raznostnoi skheme gazovoi dinamiki v eilerovykh peremennykh s adaptivnoi regulyarizatsiei resheniya”, Preprinty IPM im. M. V. Keldysha, 2019, 14, 23 pp.
[14] O. Rahimly, V. Podryga, Y. Poveshchenko, P. Rahimly, Y. Sharova, “Two-Layer Completely Conservative Difference Scheme of Gas Dynamics in Eulerian Variables with Adaptive Regularization of Solution.”, Lecture Notes in Computer Science, 11958, 2020, 618–625 | DOI | MR
[15] M. E. Ladonkina, Yu. A. Poveschenko, O. R. Ragimli, Kh. Chzhan, “Teoreticheskii analiz polnostyu konservativnykh raznostnykh skhem s adaptivnoi vyazkostyu”, Zhurnal SVMO, 23:4 (2021), 412–423 | DOI