Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2022_24_3_a1, author = {A. V. Vedenin}, title = {Fast converging {Chernoff} approximations to the solution of heat equation with variable coefficient of thermal conductivity}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {280--288}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2022_24_3_a1/} }
TY - JOUR AU - A. V. Vedenin TI - Fast converging Chernoff approximations to the solution of heat equation with variable coefficient of thermal conductivity JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2022 SP - 280 EP - 288 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2022_24_3_a1/ LA - ru ID - SVMO_2022_24_3_a1 ER -
%0 Journal Article %A A. V. Vedenin %T Fast converging Chernoff approximations to the solution of heat equation with variable coefficient of thermal conductivity %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2022 %P 280-288 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2022_24_3_a1/ %G ru %F SVMO_2022_24_3_a1
A. V. Vedenin. Fast converging Chernoff approximations to the solution of heat equation with variable coefficient of thermal conductivity. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 24 (2022) no. 3, pp. 280-288. http://geodesic.mathdoc.fr/item/SVMO_2022_24_3_a1/
[1] Numerical methods for partial differential equationsed. . by G. Evans, J. Blackledge, P. Yardley, Springer, 2000, 304 pp. | MR
[2] V. Ruas., Numerical methods for partial differential equations: an introduction, Wiley, 2016., 376 pp. | MR
[3] Numerical methods for PDEs. : state of the art techniquesed. . by D. A. Di Pietro, A. Ern, L. Formaggia, Springer, Cham, Switzerland, 2018., 330 pp. | MR
[4] K.-J. Engel, R. Nagel., One-parameter semigroups for linear evolution equations, Springer, New York, 2000, 589 pp. | MR
[5] P. R. Chernoff., “Note on product formulas for operator semigroups”, J. Functional Analysis, 2:2 (1968), 238-–242 | DOI | MR
[6] Ya. A. Butko, “The method of Chernoff approximation”, Springer Proceedings in Mathematics and Statistics, 325 (2020), 19-46 | MR
[7] I. D. Remizov, “Solution-giving formula to Cauchy problem for multidimensional parabolic equation with variable coefficients”, Journal of Mathematical Physics, 60:7 (2019) | DOI | MR
[8] I. D. Remizov, “Quasi-Feynman formulas a method of obtaining the evolution operator for the Schrödinger equation”, J. Funct. Anal, 270:12 (2016), 4540-4557 | DOI | MR
[9] A.Gomilko, S.Kosowicz, Yu.Tomilov, “A general approach to approximation theory of operator semigroups”, Journal de Mathématiques Pures et Appliquées, 127 (2019), 216–267 | DOI | MR
[10] Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Rate of convergence of Feynman approximations of semigroups generated by the oscillator Hamiltonian”, Theoretical and Mathematical Physics, 172 (2012), 987–1000 | DOI | MR
[11] A. Gomilko, Yu. Tomilov, “On convergence rates in approximation theory for operator semigroups”, Journal of Functional Analysis, 266:5 (2014), 3040–3082 | DOI | MR
[12] I. D. Remizov, “On estimation of error in approximations provided by chernoff’s product formula”, International Conference ’ShilnikovWorkshop-2018’ dedicated to the memory of outstanding Russian mathematician Leonid Pavlovich Shilnikov (1934-2011), book of abstracts, 2018, 38–41 | MR
[13] A. V. Vedenin, V. S. Voevodkin, V. D. Galkin, E. Yu. Karatetskaya, I. D. Remizov, “Speed of convergence of Chernoff approximations to solutions of evolution equations”, Mathematical Notes, 108:3 (2020), 451–456 | DOI | MR
[14] O. E. Galkin, I. D. Remizov, “Rate of convergence of Chernoff approximations to $C_0$-semigroups of operators”, Mathematical Notes, 111:2 (2022), 305–307 | DOI | MR
[15] O. E. Galkin, I. D. Remizov, Upper and lower estimates for rate of convergence in the Chernoff product formula for semigroups of operators, 2022, 33 pp. | MR
[16] P. S. Prudnikov, Speed of convergence of Chernoff approximations for two model examples: heat equation and transport equation, 2012, 27 pp.