On the stability of Lotka-Volterra model with a delay
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 24 (2022) no. 2, pp. 175-184.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper examines the stability problem of biological, economic and other processes modeled by the Lotka-Volterra equations with delay. The difference between studied equations and the known ones is that the adaptability functions and the coefficients of the relative change of the interacting subjects or objects are non-linear and take into account variable delay in the action of factors affecting the number of subjects or objects. Moreover, these functions admit the existence of equilibrium positions’ set that is finite in a bounded domain. The stability study of three types of equilibrium positions is carried out using direct analysis of perturbed equations and construction of Lyapunov functionals that satisfy conditions of well-known theorems. Corresponding sufficient conditions for asymptotic stability including global stability are derived, as well as instability and attraction conditions of these positions.
Mots-clés : Lotka-Volterra model, equilibrium position
Keywords: delay differential equations, stability.
@article{SVMO_2022_24_2_a4,
     author = {D. Kh. Khusanov and A. E. Kaxxorov},
     title = {On the stability of {Lotka-Volterra} model with a delay},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {175--184},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2022_24_2_a4/}
}
TY  - JOUR
AU  - D. Kh. Khusanov
AU  - A. E. Kaxxorov
TI  - On the stability of Lotka-Volterra model with a delay
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2022
SP  - 175
EP  - 184
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2022_24_2_a4/
LA  - ru
ID  - SVMO_2022_24_2_a4
ER  - 
%0 Journal Article
%A D. Kh. Khusanov
%A A. E. Kaxxorov
%T On the stability of Lotka-Volterra model with a delay
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2022
%P 175-184
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2022_24_2_a4/
%G ru
%F SVMO_2022_24_2_a4
D. Kh. Khusanov; A. E. Kaxxorov. On the stability of Lotka-Volterra model with a delay. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 24 (2022) no. 2, pp. 175-184. http://geodesic.mathdoc.fr/item/SVMO_2022_24_2_a4/

[1] V. Volterra, Lecons sur la theorie mathematique de la lutte pour la vie, Gauthier-Villars, Paris, 1990, 226 pp. | MR

[2] V. Volterra, Theory of functionals and of integral and integro-differential equations, Dover Publications, New York, 1959, 288 pp. | MR | Zbl

[3] A. J. Lotka, Elements of physical biology, Williams and Wilkins Co, Baltimore, 1925, 460 pp. | Zbl

[4] J. Hale, Theory of functional differential equations, Springer-Verlag, New York, 1977, 366 pp. | DOI | MR | Zbl

[5] Yu. M. Sverezhev, D. O. Logofet, Stability of biological communities, Nauka, Moscow, 1978, 352 pp. (In Russ.) | MR

[6] A. I. Kiryanen, Stability of systems with aftereffect and their applications, St. Petersburg University Publ., St. Petersburg, 1994, 240 pp. (In Russ.) | MR

[7] A. Yu. Alexandrov, A. V. Platonov, V. N. Starkov, N. A. Stepanenko, Mathematical modeling and study of the stability of biological communities, Lan Publ., St. Petersburg, 2017, 270 pp. (In Russ.)

[8] N. Rouche, P. Habets, M. Laloy, Stability theory by Lyapunov’s direct method, Springer, New York, 1977, 396 pp. | DOI | MR

[9] N. N. Krasovskii, Stability of motion, Standford University Press, Standford, 1963, 218 pp. | MR | Zbl

[10] A. S. Andreev, D. Kh. Khusanov, “On the method of Lyapunov functionals in the problem of asymptotic stability and instability”, Differential Equations, 34:7 (1998), 876–885 (In Russ.) | MR | Zbl

[11] D. Kh. Khusanov, On the constructive and qualitative theory of functional differential equations, Fan Publ., Tashkent, 2002 (In Russ.)