On perturbations of algebraic periodic automorphisms of a two-dimensional torus
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 24 (2022) no. 2, pp. 141-150.

Voir la notice de l'article provenant de la source Math-Net.Ru

According to the results of V. Z. Grines and A. N. Bezdenezhnykh, for each gradient-like diffeomorphism of a closed orientable surface $M^2$ there exist a gradient-like flow and a periodic diffeomorphism of this surface such that the original diffeomorphism is a superposition of a diffeomorphism that is a shift per unit time of the flow and the periodic diffeomorphism. In the case when $M^2$ is a two-dimensional torus, there is a topological classification of periodic maps. Moreover, it is known that there is only a finite number of topological conjugacy classes of periodic diffeomorphisms that are not homotopic to identity one. Each such class contains a representative that is a periodic algebraic automorphism of a two-dimensional torus. Periodic automorphisms of a two-dimensional torus are not structurally stable maps, and, in general, it is impossible to predict the dynamics of their arbitrarily small perturbations. However, in the case when a periodic diffeomorphism is algebraic, we constructed a one-parameter family of maps consisting of the initial periodic algebraic automorphism at zero parameter value and gradient-like diffeomorphisms of a two-dimensional torus for all non-zero parameter values. Each diffeomorphism of the constructed one-parameter families inherits, in a certain sense, the dynamics of a periodic algebraic automorphism being perturbed.
Keywords: two-dimensional torus, one-parameter families.
Mots-clés : nonhyperbolic algebraic automorphism
@article{SVMO_2022_24_2_a1,
     author = {V. Z. Grines and D. I. Mints and E. E. Chilina},
     title = {On perturbations of algebraic  periodic automorphisms of a two-dimensional torus},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {141--150},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2022_24_2_a1/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - D. I. Mints
AU  - E. E. Chilina
TI  - On perturbations of algebraic  periodic automorphisms of a two-dimensional torus
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2022
SP  - 141
EP  - 150
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2022_24_2_a1/
LA  - ru
ID  - SVMO_2022_24_2_a1
ER  - 
%0 Journal Article
%A V. Z. Grines
%A D. I. Mints
%A E. E. Chilina
%T On perturbations of algebraic  periodic automorphisms of a two-dimensional torus
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2022
%P 141-150
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2022_24_2_a1/
%G ru
%F SVMO_2022_24_2_a1
V. Z. Grines; D. I. Mints; E. E. Chilina. On perturbations of algebraic  periodic automorphisms of a two-dimensional torus. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 24 (2022) no. 2, pp. 141-150. http://geodesic.mathdoc.fr/item/SVMO_2022_24_2_a1/

[1] A. B. Katok, B. Hasselblat., Introduction to the modern dynamical systems theory, Factorial Publ., Moscow, 1999, 768 pp. (In Russ.) | MR

[2] D. V. Anosov, “Geodesic flows on closed Riemannian manifolds of negative curvature”, Trudy Mat. Inst. Steklov., 90 (1967), 3–210 (In Russ.) | MR

[3] S. Batterson, “The dynamics of Morse-Smale diffeomorphisms on the torus”, Transactions of the American Mathematical Society, 256 (1979), 395–403 | DOI | MR | Zbl

[4] S. V. Sidorov, E. E. Chilina, “On non-hyperbolic algebraic automorphisms of a two-dimensional torus”, Zhurnal SVMO, 23:3 (2021), 295–307 (In Russ.) | DOI

[5] A. N. Bezdenezhykh, V. Z. Grines, “Realization of gradient-like diffeomorphisms of two-dimensional manifolds”, Sel. Math. Sov., 11:1 (1992), 19–23 | MR

[6] J. Nielsen, Die struktur periodischer transformationen von flachen, Levin Munksgaard, Kobenhavn, 1937, 78 pp.