Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2022_24_2_a0, author = {V. D. Galkin and O. V. Pochinka}, title = {Spherical flow diagram with finite hyperbolic chain-recurrent set}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {132--140}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2022_24_2_a0/} }
TY - JOUR AU - V. D. Galkin AU - O. V. Pochinka TI - Spherical flow diagram with finite hyperbolic chain-recurrent set JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2022 SP - 132 EP - 140 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2022_24_2_a0/ LA - ru ID - SVMO_2022_24_2_a0 ER -
V. D. Galkin; O. V. Pochinka. Spherical flow diagram with finite hyperbolic chain-recurrent set. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 24 (2022) no. 2, pp. 132-140. http://geodesic.mathdoc.fr/item/SVMO_2022_24_2_a0/
[1] G. Fleitas, “Classification of gradient-like flows on dimensions two and three”, Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society, 19:6 (1975), 155-187 | MR
[2] C. Kosniowski, A first course in algebraic topology, Cambridge University Press, Cambridge, 1980 | DOI | MR | Zbl
[3] T. V. Medvedev, O. V. Pochinka, S. Kh. Zinina, “On existence of Morse energy function for topological flows”, Advances in Mathematics, 378 (2021), 15 pp. | DOI | MR | Zbl
[4] O. V. Pochinka, S. Kh. Zinina, “Construction of the Morse-Bott Energy Function for Regular Topological Flows”, Regular and Chaotic Dynamics, 26:4 (2021), 350-369 | DOI | MR | Zbl
[5] V. Z. Grines, V. S. Medvedev, O. V. Pochinka, E. V. Zhuzhoma, “Global attractor and repeller of Morse-Smale diffeomorphisms”, Trudy MIAN, 271 (2010), 111-133 | MR | Zbl