Spherical flow diagram with finite hyperbolic chain-recurrent set
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 24 (2022) no. 2, pp. 132-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, authors examine flows with a finite hyperbolic chain-recurrent set without heteroclinic intersections on arbitrary closed $n$-manifolds. For such flows, the existence of a dual attractor and a repeller is proved. These points are separated by a $(n-1)$-dimensional sphere, which is secant for wandering trajectories in a complement to attractor and repeller. The study of the flow dynamics makes it possible to obtain a topological invariant, called a spherical flow scheme, consisting of multi-dimensional spheres that are the intersections of a secant sphere with invariant saddle manifolds. It is worth known that for some classes of flows spherical scheme is complete invariant. Thus, it follows from G. Fleitas results that for polar flows (with a single sink and a single source) on the surface, it is the spherical scheme that is complete equivalence invariant.
Keywords: flows on n-manifolds, chain-recurrent set, gradient-like flow, secant, spherical scheme.
@article{SVMO_2022_24_2_a0,
     author = {V. D. Galkin and O. V. Pochinka},
     title = {Spherical flow diagram with finite hyperbolic chain-recurrent set},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {132--140},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2022_24_2_a0/}
}
TY  - JOUR
AU  - V. D. Galkin
AU  - O. V. Pochinka
TI  - Spherical flow diagram with finite hyperbolic chain-recurrent set
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2022
SP  - 132
EP  - 140
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2022_24_2_a0/
LA  - ru
ID  - SVMO_2022_24_2_a0
ER  - 
%0 Journal Article
%A V. D. Galkin
%A O. V. Pochinka
%T Spherical flow diagram with finite hyperbolic chain-recurrent set
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2022
%P 132-140
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2022_24_2_a0/
%G ru
%F SVMO_2022_24_2_a0
V. D. Galkin; O. V. Pochinka. Spherical flow diagram with finite hyperbolic chain-recurrent set. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 24 (2022) no. 2, pp. 132-140. http://geodesic.mathdoc.fr/item/SVMO_2022_24_2_a0/

[1] G. Fleitas, “Classification of gradient-like flows on dimensions two and three”, Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society, 19:6 (1975), 155-187 | MR

[2] C. Kosniowski, A first course in algebraic topology, Cambridge University Press, Cambridge, 1980 | DOI | MR | Zbl

[3] T. V. Medvedev, O. V. Pochinka, S. Kh. Zinina, “On existence of Morse energy function for topological flows”, Advances in Mathematics, 378 (2021), 15 pp. | DOI | MR | Zbl

[4] O. V. Pochinka, S. Kh. Zinina, “Construction of the Morse-Bott Energy Function for Regular Topological Flows”, Regular and Chaotic Dynamics, 26:4 (2021), 350-369 | DOI | MR | Zbl

[5] V. Z. Grines, V. S. Medvedev, O. V. Pochinka, E. V. Zhuzhoma, “Global attractor and repeller of Morse-Smale diffeomorphisms”, Trudy MIAN, 271 (2010), 111-133 | MR | Zbl