Numerical analysis of heating by a current pulse of a~niobium nitride membrane in its longitudinal section
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 4, pp. 424-432.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical calculation of the evolution of the temperature distribution in the longitudinal section of a niobium nitride membrane when it is heated by an electric current pulse is performed. Mathematical modeling was carried out on the basis of a two-dimensional initial-boundary value problem for an inhomogeneous heat equation. In the initial boundary value problem, it was taken into account that current and potential contacts to the membrane serve simultaneously as contacts for heat removal. The case was considered for the third from the left and the first from the right initial-boundary value problem. Analysis of the numerical solution showed that effective heat removal from the membrane can be provided by current-carrying and potential clamping contacts made, for example, of beryllium bronze. This makes it possible to study the current-voltage characteristics of superconducting membranes near the critical temperature of the transition to the superconducting state by currents close to the critical density without significant heating.
Keywords: inhomogeneous two-dimensional heat conduction equation, numerical analysis, evolution of temperature distribution, 1st and 3rd initial-boundary value problems, cross section, current contact, potential contact, pulsed heating by current.
Mots-clés : niobium nitride membrane
@article{SVMO_2021_23_4_a4,
     author = {N. D. Kuzmichev and E. V. Danilova and M. A. Vasyutin},
     title = {Numerical analysis of heating by a current pulse of a~niobium nitride membrane in its longitudinal section},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {424--432},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a4/}
}
TY  - JOUR
AU  - N. D. Kuzmichev
AU  - E. V. Danilova
AU  - M. A. Vasyutin
TI  - Numerical analysis of heating by a current pulse of a~niobium nitride membrane in its longitudinal section
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2021
SP  - 424
EP  - 432
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a4/
LA  - ru
ID  - SVMO_2021_23_4_a4
ER  - 
%0 Journal Article
%A N. D. Kuzmichev
%A E. V. Danilova
%A M. A. Vasyutin
%T Numerical analysis of heating by a current pulse of a~niobium nitride membrane in its longitudinal section
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2021
%P 424-432
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a4/
%G ru
%F SVMO_2021_23_4_a4
N. D. Kuzmichev; E. V. Danilova; M. A. Vasyutin. Numerical analysis of heating by a current pulse of a~niobium nitride membrane in its longitudinal section. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 4, pp. 424-432. http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a4/

[1] A. Shurakov, Y. Lobanov, G. Goltsman, “Superconducting hot-electron bolometer: from the discovery of hot-electron phenomena to practical applications”, Superconductor Science and Technology, 29:2 (2016) (In Russ.) | DOI

[2] N. D. Kuzmichev, M. A. Vasyutin, E. V. Danilova, E. A. Lapshina, “Mathematical modeling of heat transfer in the film-substrate-thermostat system during heating of an electrically conductive film by a high-density pulse current”, Zhurnal SVMO, 23:1 (2021), 82-90 (In Russ.) | DOI

[3] A. N. Tikhonov, A. A. Samarskij, Equations of mathematical physics, Moscow University Publ., Moscow, 1999, 799 pp. (In Russ.) | MR

[4] Tables of physical quantities. Reference book, ed. I. K. Kikoina, Atomizdat Publ., Moscow, 1976, 1008 pp. (In Russ.)

[5] G. V. Kuznetsov, M. A. Sheremet, Difference Methods for Solving Heat Conduction Problems, Tomsk State University Publ., Tomsk, 2007, 172 pp. (In Russ.)

[6] V. F. Formalev, D. L. Reviznikov, Numerical Methods, Fizmatlit Publ., Moscow, 2006, 406 pp. (In Russ.)

[7] L. I. Tyrchak, P. V. Plotnikov, Numerical Basics, Fizmatlit Publ., Moscow, 2005, 304 pp. (In Russ.)