On topology of manifolds admitting gradient-like calscades with surface dynamics and on growth of the number of non-compact heteroclinic curves
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 4, pp. 379-393.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class $GSD(M^3)$ of gradient-like diffeomorphisms with surface dynamics given on closed oriented manifold $M^3$ of dimension three. Earlier it was proved that manifolds admitting such diffeomorphisms are mapping tori under closed orientable surface of genus $g$, and the number of non-compact heteroclinic curves of such diffeomorphisms is not less than $12g$. In this paper, we determine a class of diffeomorphisms $GSDR (M^3) \subset GSD(M^3)$ that have the minimum number of heteroclinic curves for a given number of periodic points, and prove that the supporting manifold of such diffeomorphisms is a Seifert manifold. The separatrices of periodic points of diffeomorphisms from the class $ GSDR (M^3) $ have regular asymptotic behavior, in particular, their closures are locally flat. We provide sufficient conditions (independent on dynamics) for mapping torus to be Seifert. At the same time, the paper establishes that for any fixed $g \ geq 1$, fixed number of periodic points, and any integer $ n \geq 12g$, there exists a manifold $M^3$ and a diffeomorphism $f \in GSD (M^3)$ having exactly $ n $ non-compact heteroclinic curves.
Keywords: gradient-like diffeomorphism, surface dynamics, topological classification, non-compact heteroclinic curve, Seifert manifolds.
@article{SVMO_2021_23_4_a1,
     author = {V. Z. Grines and E. Ya. Gurevich and E. I. Yakovlev},
     title = {On topology of manifolds admitting gradient-like calscades with surface dynamics and on growth of the number of non-compact heteroclinic curves},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {379--393},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a1/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - E. Ya. Gurevich
AU  - E. I. Yakovlev
TI  - On topology of manifolds admitting gradient-like calscades with surface dynamics and on growth of the number of non-compact heteroclinic curves
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2021
SP  - 379
EP  - 393
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a1/
LA  - ru
ID  - SVMO_2021_23_4_a1
ER  - 
%0 Journal Article
%A V. Z. Grines
%A E. Ya. Gurevich
%A E. I. Yakovlev
%T On topology of manifolds admitting gradient-like calscades with surface dynamics and on growth of the number of non-compact heteroclinic curves
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2021
%P 379-393
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a1/
%G ru
%F SVMO_2021_23_4_a1
V. Z. Grines; E. Ya. Gurevich; E. I. Yakovlev. On topology of manifolds admitting gradient-like calscades with surface dynamics and on growth of the number of non-compact heteroclinic curves. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 4, pp. 379-393. http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a1/

[1] V. Grines, V. Medvedev, E. Zhuzhoma, “On surface attractors and repellers in 3-manifolds”, Math. Notes, 78:6 (2005), 757–767 | DOI | MR | Zbl

[2] V. Grines, O. Pochinka, V. Medvedev, Yu. Levchenko, “The topological classification of structural stable 3-diffeomorphisms with two-dimensional basic sets”, Nonlinearity, 28:11 (2015), 4081–4102 | DOI | MR | Zbl

[3] V. Grines, E. Gurevich, O. Pochinka, “On the number of non-compact heteroclinic curves of diffeomorphisms with a surface dynamics”, Regular and Chaotic Dynamics, 22:2 (2017), 122–135 | DOI | MR | Zbl

[4] V. Grines, E. Gurevich, S. Kevlia, “On gradient-like flows on seifert manifolds”, Lobachevskii Journal of Mathematics, 42:5 (2021), 901–910 | DOI | MR | Zbl

[5] V. Grines, E. Gurevich, E. Kurenkov, “Topological classification of gradient-like flows with surface dynamics on 3-manifolds”, Math. Notes, 107:1 (2020), 145–148 | DOI | MR | Zbl

[6] V. Grines, E. Gurevich, E. Zhuzhoma, S. Zinina, “Heteroclinic curves of Morse-Smale diffeomorphisms and separators in plasma magnetic field”, Nelineynaya dynamika, 10:4 (2014), 427–438 | DOI | Zbl

[7] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl

[8] J. Nielsen, Die struktur periodischer transformationen von flachen, v. 15, Levin, Kobenhavn, 1937, 78 pp.

[9] D. Pixton, “Wild unstable manifold”, Topology, 16 (1977), 167–172 | DOI | MR | Zbl

[10] Epstein D. B. A., “Periodic flows on 3-manifolds”, Ann. Math., 95 (1972), 66–82 | DOI | MR | Zbl

[11] E. Spanier, Algebraic Topology, Mir Publ., Moscow, 1971, 693 pp. (In Russ.)

[12] J. H. C. Whitehead, “Manifolds with transverse fields in Euclidean space”, Ann. Math., 73 (1961), 154–212 | DOI | MR | Zbl