On non-hyperbolic algebraic automorphisms of~a~two-dimensional torus
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 3, pp. 295-307.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper contains a complete classification of algebraic non-hyperbolic automorphisms of a two-dimensional torus, announced by S. Batterson in 1979. Such automorphisms include all periodic automorphisms. Their classification is directly related to the topological classification of gradient-like diffeomorphisms of surfaces, since according to the results of V. Z. Grines and A.N. Bezdenezhykh, any gradient like orientation -preserving diffeomorphism of an orientable surface is represented as a superposition of the time-1 map of a gradient-like flow and some periodic homeomorphism. J. Nielsen found necessary and sufficient conditions for the topological conjugacy of orientation-preserving periodic homeomorphisms of orientable surfaces by means of orientation-preserving homeomorphisms. The results of this work allow us to completely solve the problem of realization all classes of topological conjugacy of periodic maps that are not homotopic to the identity in the case of a torus. Particularly, it follows from the present paper and the work of that if the surface is a two-dimensional torus, then there are exactly seven such classes, each of which is represented by algebraic automorphism of a two-dimensional torus induced by some periodic matrix.
Keywords: periodic homeomorphisms, two-dimensional torus
Mots-clés : algebraic automorphism.
@article{SVMO_2021_23_3_a3,
     author = {S. V. Sidorov and E. E. Chilina},
     title = {On non-hyperbolic algebraic automorphisms of~a~two-dimensional torus},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {295--307},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2021_23_3_a3/}
}
TY  - JOUR
AU  - S. V. Sidorov
AU  - E. E. Chilina
TI  - On non-hyperbolic algebraic automorphisms of~a~two-dimensional torus
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2021
SP  - 295
EP  - 307
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2021_23_3_a3/
LA  - ru
ID  - SVMO_2021_23_3_a3
ER  - 
%0 Journal Article
%A S. V. Sidorov
%A E. E. Chilina
%T On non-hyperbolic algebraic automorphisms of~a~two-dimensional torus
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2021
%P 295-307
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2021_23_3_a3/
%G ru
%F SVMO_2021_23_3_a3
S. V. Sidorov; E. E. Chilina. On non-hyperbolic algebraic automorphisms of~a~two-dimensional torus. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 3, pp. 295-307. http://geodesic.mathdoc.fr/item/SVMO_2021_23_3_a3/

[1] S. Batterson, “The Dynamics of Morse-Smale Diffeomorphisms on the Torus”, Transactions of the American Mathematical Society, 256 (1979), 395–403 (In English) | DOI | Zbl

[2] A. N. Bezdenezhykh, V. Z. Grines, “Realization of Gradient-Like Diffeomorphisms of Two-Dimensional Manifolds”, Sel. Math. Sov., 11:1 (1992), 19–23

[3] J. Nielsen, “Die struktur periodischer transformationen von flachen”, Kobenhavn: Levin Munksgaard, 15 (1937), 77 pp. (In English)

[4] D. A. Baranov, V. Z. Grines, O. V. Pochinka, E. E. Chilina, “On Classification of Periodic Maps of 2-torus”, Russian Math. (Iz. VUZ). Applied Nonlinear Dynamics (In Russ.) (In print.)

[5] N. Newman, Integral matrices, Academic Press, New York, 1972, 223 pp. (In English) | Zbl

[6] J. Masley, H. Montgomery, “Cyclotomic fields with unique factorization”, J.Reine Angew, 1976, no. 286-287, 248–256 (In English) | DOI | Zbl

[7] V. N. Shevchenko, S. V. Sidorov, “On the similarity of second-order matrices over the ring of integers”, Russian Math. (Iz. VUZ), 50:4 (2006), 56–63 | Zbl

[8] L. Kronecker, “Zwei Satze uber Gleichungen mit ganzzahligen Coefficienten”, Journal fur die reine und angewandte Mathematik, 1857:53 (1857), 173–175 (In English) | DOI | Zbl