On maintaining the stability of the equilibrium of nonlinear oscillators under conservative perturbations
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 3, pp. 285-294.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of Yu.N. Bibikov on maintaining the stability of the equilibrium position of two interconnected nonlinear oscillators under the action of small, in a certain sense, conservative perturbing forces is considered. With different methods of reducing the system to the Hamiltonian form, some features are revealed for the case when the perturbing forces of the interaction of two oscillators are potential. The conditions for preserving the stability and instability of the equilibrium of two oscillators for the case of sufficiently small disturbing forces are obtained. The problem of maintaining the stability of the equilibrium under conservative perturbations is also considered in the more general situation of an arbitrary number of oscillators with power potentials with rational exponents, which leads to the case of a generalized homogeneous potential of an unperturbed system. The example given shows the applicability of the proposed approach in the case when the order of smallness of the perturbing forces coincides with the order of smallness of the unperturbed Hamiltonian.
Keywords: nonlinear oscillators, Hamiltonian system, stability.
@article{SVMO_2021_23_3_a2,
     author = {A. A. Kosov},
     title = {On maintaining the stability of the equilibrium of nonlinear oscillators under conservative perturbations},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {285--294},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2021_23_3_a2/}
}
TY  - JOUR
AU  - A. A. Kosov
TI  - On maintaining the stability of the equilibrium of nonlinear oscillators under conservative perturbations
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2021
SP  - 285
EP  - 294
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2021_23_3_a2/
LA  - ru
ID  - SVMO_2021_23_3_a2
ER  - 
%0 Journal Article
%A A. A. Kosov
%T On maintaining the stability of the equilibrium of nonlinear oscillators under conservative perturbations
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2021
%P 285-294
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2021_23_3_a2/
%G ru
%F SVMO_2021_23_3_a2
A. A. Kosov. On maintaining the stability of the equilibrium of nonlinear oscillators under conservative perturbations. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 3, pp. 285-294. http://geodesic.mathdoc.fr/item/SVMO_2021_23_3_a2/

[1] Bibikov Yu. N., “On Stability in Hamiltonian Systems with Two Degrees of Freedom”, Mathematical Notes, 95:2 (2014), 176–181 | DOI | Zbl

[2] Zubov V. I., “Mathematical Methods for the Study of Automatic Control Systems”, Elsevier, Pergamon, Oxford, 1962, 327 pp.

[3] Arnold V. I., “Mathematical Methods of Classical Mechanics”, Springer-Verlag, New York, 1978, 464 pp. | DOI

[4] Moser J.K., Lectures on Hamiltonian Systems, Amer. Math. Soc., Providence, RI., 1968, 87 pp. (In English)

[5] Sokol’skii A. G., “On Stability of an Autonomous Hamilton System with Two Degrees of Freedom under First-Order Resonance”, Journal of Applied Mathematics and Mechanics, 41:1 (1977), 24–33 (In Russ.)

[6] Bryuno A. D., “Analytic form of differential equations”, Trans. Moscow Math. Soc, 26 (1972), 199-239 | DOI | Zbl

[7] Bryuno A. D., “Stability in a Hamiltonian System”, Mathematical Notes, 40:3 (1986), 726–730 | DOI | Zbl

[8] Kozlov V. V., “Instability of Equilibrium in a Potential Field”, Russian Math. Surveys, 36:3 (1981), 238–239 | DOI | Zbl