Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2021_23_3_a2, author = {A. A. Kosov}, title = {On maintaining the stability of the equilibrium of nonlinear oscillators under conservative perturbations}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {285--294}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2021_23_3_a2/} }
TY - JOUR AU - A. A. Kosov TI - On maintaining the stability of the equilibrium of nonlinear oscillators under conservative perturbations JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2021 SP - 285 EP - 294 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2021_23_3_a2/ LA - ru ID - SVMO_2021_23_3_a2 ER -
%0 Journal Article %A A. A. Kosov %T On maintaining the stability of the equilibrium of nonlinear oscillators under conservative perturbations %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2021 %P 285-294 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2021_23_3_a2/ %G ru %F SVMO_2021_23_3_a2
A. A. Kosov. On maintaining the stability of the equilibrium of nonlinear oscillators under conservative perturbations. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 3, pp. 285-294. http://geodesic.mathdoc.fr/item/SVMO_2021_23_3_a2/
[1] Bibikov Yu. N., “On Stability in Hamiltonian Systems with Two Degrees of Freedom”, Mathematical Notes, 95:2 (2014), 176–181 | DOI | Zbl
[2] Zubov V. I., “Mathematical Methods for the Study of Automatic Control Systems”, Elsevier, Pergamon, Oxford, 1962, 327 pp.
[3] Arnold V. I., “Mathematical Methods of Classical Mechanics”, Springer-Verlag, New York, 1978, 464 pp. | DOI
[4] Moser J.K., Lectures on Hamiltonian Systems, Amer. Math. Soc., Providence, RI., 1968, 87 pp. (In English)
[5] Sokol’skii A. G., “On Stability of an Autonomous Hamilton System with Two Degrees of Freedom under First-Order Resonance”, Journal of Applied Mathematics and Mechanics, 41:1 (1977), 24–33 (In Russ.)
[6] Bryuno A. D., “Analytic form of differential equations”, Trans. Moscow Math. Soc, 26 (1972), 199-239 | DOI | Zbl
[7] Bryuno A. D., “Stability in a Hamiltonian System”, Mathematical Notes, 40:3 (1986), 726–730 | DOI | Zbl
[8] Kozlov V. V., “Instability of Equilibrium in a Potential Field”, Russian Math. Surveys, 36:3 (1981), 238–239 | DOI | Zbl