Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2021_23_3_a0, author = {I. V. Boykov and V. A. Rudnev and A. I. Boikova and N. S. Stepanov}, title = {Continuous operator method application for direct and inverse scattering problems}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {247--272}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2021_23_3_a0/} }
TY - JOUR AU - I. V. Boykov AU - V. A. Rudnev AU - A. I. Boikova AU - N. S. Stepanov TI - Continuous operator method application for direct and inverse scattering problems JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2021 SP - 247 EP - 272 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2021_23_3_a0/ LA - ru ID - SVMO_2021_23_3_a0 ER -
%0 Journal Article %A I. V. Boykov %A V. A. Rudnev %A A. I. Boikova %A N. S. Stepanov %T Continuous operator method application for direct and inverse scattering problems %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2021 %P 247-272 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2021_23_3_a0/ %G ru %F SVMO_2021_23_3_a0
I. V. Boykov; V. A. Rudnev; A. I. Boikova; N. S. Stepanov. Continuous operator method application for direct and inverse scattering problems. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 3, pp. 247-272. http://geodesic.mathdoc.fr/item/SVMO_2021_23_3_a0/
[1] I. V. Boikov, “On a Continuous Method for Solving Nonlinear Operator Equations”, Differential Equations, 48:9 (2012), 1308–1314 (In Russ.) | Zbl
[2] I. V. Boikov, V. A. Roudnev, A. I. Boikova, O. A. Baulina, “New Iterative Method for Solving Linear and Nonlinear Hypersingular Integral Equations”, Applied Numerical Mathematics, 127 (2018), 280–305 (In English) | DOI
[3] D. Colton, R. Kress, Integral Equation Methods in Scattering Theory, John Wiley Sons, New York, 1983, 287 pp. (In English) | Zbl
[4] S. G. Daeva, A. V. Setukha, “On the Numerical Solution of the Neumann Boundary Value Problem for the Helmholtz Equation by the Method of Hypersingular Integral Equations”, Computational Methods and Programming, 16:3 (2015), 421–435 (In Russ.)
[5] I. V. Boikov, N. V. Moiko, “Approximate Solution of the Helmholtz Equation”, Proceedings of the International Conference on Computation Mathematics, 2002, 374–380 (In Russ.)
[6] Z. Y. Yan, K. C. Hung, H. Zheng, “Solving the Hypersingular Boundary Integral Equation in Three-Dimensional Acoustics a Regularization Relationship”, J. Acoust. Soc. Am., 113:5 (2003), 2674–2683 (In English) | DOI
[7] I. A. Tsukerman, “Singularity-Free Boundary Equation Method for Wave Scattering”, IEEE Trans. Antennas Propag., 59:2 (2011), 555–562 (In English) | DOI | Zbl
[8] Yu. L. Daletskii, M. G. Krein, Stability of Solutions of Differential Equations in Banach Space, Nauka Publ., Moscow, 1970, 386 pp. (In Russ.)
[9] K. Dekker, J. G. Verwer, Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations, North Holland Publishing Co., Amsterdam, 1984, 386 pp.
[10] S. M. Lozinskii, “Note on a paper by V.S. Godlevskii”, USSR Computational Mathematics and Mathematical Physics, 13:2 (1973), 457–459 (In Russ.)
[11] V. A. Kondrat’ev, O. A. Oleinik, “Boundary-Value Problems for Partial Differential Equations in Non-Smooth Domains”, Uspekhi Mat. Nauk, 38:2 (1983), 3–76 (In Russ.) | Zbl
[12] V. M. Babich, M. A. Lyalinovm, V. E. Grikurov, The Sommerfeld-Malyuzhinets Method in the Theory of Diffraction, St. Petersburg State University Publ., St. Petersburg, 2003, 104 pp. (In Russ.)
[13] F. Preparata, M. Sheimos, Computational Geometry: An Introduction, Springer-Verlag New York Inc., New York, 1985, 390 pp. (In English)
[14] A. V. Skvortsov, Delaunay Triangulation and Its Application, Tomsk University Publ., Tomsk, 2002, 128 pp. (In Russ.)