Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2021_23_1_a3, author = {M. \`E. Fairuzov and F. V. Lubyshev}, title = {On a method for approximate solution of a mixed boundary value problem for an elliptic equation}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {58--71}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a3/} }
TY - JOUR AU - M. È. Fairuzov AU - F. V. Lubyshev TI - On a method for approximate solution of a mixed boundary value problem for an elliptic equation JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2021 SP - 58 EP - 71 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a3/ LA - ru ID - SVMO_2021_23_1_a3 ER -
%0 Journal Article %A M. È. Fairuzov %A F. V. Lubyshev %T On a method for approximate solution of a mixed boundary value problem for an elliptic equation %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2021 %P 58-71 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a3/ %G ru %F SVMO_2021_23_1_a3
M. È. Fairuzov; F. V. Lubyshev. On a method for approximate solution of a mixed boundary value problem for an elliptic equation. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 1, pp. 58-71. http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a3/
[1] F. V. Lubyshev, M. E. Fairuzov, “Approximation of a mixed boundary value problem”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 20:4 (2018), 429–438 (In Russ.)
[2] K. Rektoris, Variatsionnye metody v matematicheskoy fizike i tekhnike, Mir Publ., Moscow, 1985, 590 pp. (In Russ.)
[3] V. P. Mikhaylov, Differentsial'nye uravneniya v chastnykh proizvodnykh, Nauka Publ., Moscow, 1976, 391 pp. (In Russ.)
[4] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 408 pp. (In Russ.)
[5] David Gilbarg, Neil S. Trudinger, Elliptic Partial Differential Equations of Second Order Second Edition, Springer-Verlag, Berlin Heidelberg New York Tokyo, 1983 | MR
[6] G. I. Marchuk, V. I. Agoshkov, Vvedenie v proektsionno-setochnye metody, Nauka, M., 1987, 416 pp. (In Russ.) | MR
[7] A. A. Samarskij, R. D. Lazarov, V. L. Makarov, Raznostnye skhemy dlya differencial'nyh uravnenij s obobshchennymi resheniyami, Vysshaya shkola Publ., Moscow, 1987, 296 pp. (In Russ.)
[8] A. A. Samarskii, V. B. Andreev, Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976, 352 pp. (In Russ.) | MR
[9] A. A. Samarskij, P. N. Vabishchevich, Vychislitel'naya teploperedacha, Knizhnyy dom “LIBROKOM” Publ., M., 2009, 784 pp. (In Russ.) | MR
[10] A. A. Samarskij, E. S. Nikolaev, Metody resheniya setochnyh uravnenij, Nauka Publ, Moscow, 1978, 592 pp. (In Russ.)