Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2021_23_1_a1, author = {S. S. Mamonov and I. V. Ionova and A. O. Harlamova}, title = {Dynamics of the mathematical model of phase-locked systems with delay}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {28--42}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a1/} }
TY - JOUR AU - S. S. Mamonov AU - I. V. Ionova AU - A. O. Harlamova TI - Dynamics of the mathematical model of phase-locked systems with delay JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2021 SP - 28 EP - 42 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a1/ LA - ru ID - SVMO_2021_23_1_a1 ER -
%0 Journal Article %A S. S. Mamonov %A I. V. Ionova %A A. O. Harlamova %T Dynamics of the mathematical model of phase-locked systems with delay %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2021 %P 28-42 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a1/ %G ru %F SVMO_2021_23_1_a1
S. S. Mamonov; I. V. Ionova; A. O. Harlamova. Dynamics of the mathematical model of phase-locked systems with delay. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 1, pp. 28-42. http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a1/
[1] G. A. Leonov, I. M. Burkin, A. I. Shepelyavyy, Frequency methods in the theory of vibrations, SPbGU Publ., St. Petersburg, 1992, 368 pp. (In Russ.) | MR
[2] V. V. Shahgildyan, A. A. Lyakhovkin, Phase-locked loop systems, Svyaz' Publ, Moscow, 1972, 448 pp. (In Russ.)
[3] V. D. Shalfeev, V. V. Matrosov, Nonlinear dynamics of phase synchronization systems, NNGU Publ., N. Novgorod, 2013, 366 pp. (In Russ.)
[4] S. S. Mamonov, A. O. Kharlamova, “Determination of the conditions for the existence of limit cycles of the first kind of systems with a cylindrical phase space”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 19:1 (2017), 67–76 (In Russ.) | DOI | MR | Zbl
[5] S. S. Mamonov, A. O. Kharlamova, “Forced synchronization of the system phase-locked loop with delay”, Vestnik Ryazanskogo gosudarstvennogo radiotekhnicheskogo universiteta., 62 (2017), 26–35 (In Russ.) | DOI
[6] S. S. Mamonov, I. V. Ionova, A. O. Kharlamova, “Mechanisms of occurrence of hidden synchronization of dynamic systems”, Chebyshevckiy sbornik, 20:3 (2019), 333–348 (In Russ.) | DOI | MR | Zbl
[7] S. S. Mamonov, I. V. Ionova, A. O. Kharlamova, “Curvature of oscillatory cycles of phase systems”, Vestnik RAEN. Differentsial'nye uravneniya, 19:2 (2019), 105–110 (In Russ.)
[8] A. O. Kharlamova, “Asynchronous modes of phase systems”, Journal of Mathematical Sciences, 248:4 (2020), 476-483 | DOI | MR | Zbl
[9] S. S. Mamonov, A. O. Kharlamova, “First-kind cycles of systems with cylindrical phase space”, Journal of Mathematical Sciences, 248:4 (2020), 457-466 | DOI | MR | Zbl
[10] S. S. Mamonov, I. V. Ionova, A. O. Kharlamova, “Matrix equations of the system of phase synchronization”, Chebyshevskii Sbornik, 20:2 (2019), 244–258 (In Russ.) | DOI | MR | Zbl
[11] S. S. Mamonov, I. V. Ionova, A. O. Kharlamova, “Spatial characteristics of cycles of systems of differential equations”, Differentsial'nye uravneniya i matematicheskoe modelirovanie : mezhvuz. sb. nauch. tr., 1 (2020), 39–45 (In Russ.)
[12] E. P. Popov, Theory of nonlinear automatic control and control systems, Nauka Publ., Moscow, 1988, 256 pp. (In Russ.)
[13] M. A. Krasnosel'skiy, The operator of the shift along the trajectories of differential equations, Nauka Publ., Moscow, 1966, 332 pp. (In Russ.) | MR