Dynamics of the mathematical model of phase-locked systems with delay
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 1, pp. 28-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article, the conditions for the existence of limit cycles of the first kind are obtained for self-tuning systems with delay, which, in turn, determine the conditions for the occurrence of hidden synchronization modes in such systems. The principle of the proof is based on constructing a positively invariant toroidal set using two cylindrical surfaces, whose boundaries are determined by the limit cycles of a system of the second-order differential equations. Using the results obtained in the article for limit cycles, the possibility of using the curvature of the cycle for a comparative analysis of the proximity of the cycles of phase and non-phase systems, as well as for determining the mode of hidden synchronization, is shown.
Keywords: system of differential equations, phase system, limit cycles of the first kind, latent synchronization, multistability, fixed point, shift operator, rotation of a vector field, cycle curvature.
@article{SVMO_2021_23_1_a1,
     author = {S. S. Mamonov and I. V. Ionova and A. O. Harlamova},
     title = {Dynamics of the mathematical model of phase-locked systems with delay},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {28--42},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a1/}
}
TY  - JOUR
AU  - S. S. Mamonov
AU  - I. V. Ionova
AU  - A. O. Harlamova
TI  - Dynamics of the mathematical model of phase-locked systems with delay
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2021
SP  - 28
EP  - 42
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a1/
LA  - ru
ID  - SVMO_2021_23_1_a1
ER  - 
%0 Journal Article
%A S. S. Mamonov
%A I. V. Ionova
%A A. O. Harlamova
%T Dynamics of the mathematical model of phase-locked systems with delay
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2021
%P 28-42
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a1/
%G ru
%F SVMO_2021_23_1_a1
S. S. Mamonov; I. V. Ionova; A. O. Harlamova. Dynamics of the mathematical model of phase-locked systems with delay. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 1, pp. 28-42. http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a1/

[1] G. A. Leonov, I. M. Burkin, A. I. Shepelyavyy, Frequency methods in the theory of vibrations, SPbGU Publ., St. Petersburg, 1992, 368 pp. (In Russ.) | MR

[2] V. V. Shahgildyan, A. A. Lyakhovkin, Phase-locked loop systems, Svyaz' Publ, Moscow, 1972, 448 pp. (In Russ.)

[3] V. D. Shalfeev, V. V. Matrosov, Nonlinear dynamics of phase synchronization systems, NNGU Publ., N. Novgorod, 2013, 366 pp. (In Russ.)

[4] S. S. Mamonov, A. O. Kharlamova, “Determination of the conditions for the existence of limit cycles of the first kind of systems with a cylindrical phase space”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 19:1 (2017), 67–76 (In Russ.) | DOI | MR | Zbl

[5] S. S. Mamonov, A. O. Kharlamova, “Forced synchronization of the system phase-locked loop with delay”, Vestnik Ryazanskogo gosudarstvennogo radiotekhnicheskogo universiteta., 62 (2017), 26–35 (In Russ.) | DOI

[6] S. S. Mamonov, I. V. Ionova, A. O. Kharlamova, “Mechanisms of occurrence of hidden synchronization of dynamic systems”, Chebyshevckiy sbornik, 20:3 (2019), 333–348 (In Russ.) | DOI | MR | Zbl

[7] S. S. Mamonov, I. V. Ionova, A. O. Kharlamova, “Curvature of oscillatory cycles of phase systems”, Vestnik RAEN. Differentsial'nye uravneniya, 19:2 (2019), 105–110 (In Russ.)

[8] A. O. Kharlamova, “Asynchronous modes of phase systems”, Journal of Mathematical Sciences, 248:4 (2020), 476-483 | DOI | MR | Zbl

[9] S. S. Mamonov, A. O. Kharlamova, “First-kind cycles of systems with cylindrical phase space”, Journal of Mathematical Sciences, 248:4 (2020), 457-466 | DOI | MR | Zbl

[10] S. S. Mamonov, I. V. Ionova, A. O. Kharlamova, “Matrix equations of the system of phase synchronization”, Chebyshevskii Sbornik, 20:2 (2019), 244–258 (In Russ.) | DOI | MR | Zbl

[11] S. S. Mamonov, I. V. Ionova, A. O. Kharlamova, “Spatial characteristics of cycles of systems of differential equations”, Differentsial'nye uravneniya i matematicheskoe modelirovanie : mezhvuz. sb. nauch. tr., 1 (2020), 39–45 (In Russ.)

[12] E. P. Popov, Theory of nonlinear automatic control and control systems, Nauka Publ., Moscow, 1988, 256 pp. (In Russ.)

[13] M. A. Krasnosel'skiy, The operator of the shift along the trajectories of differential equations, Nauka Publ., Moscow, 1966, 332 pp. (In Russ.) | MR