Morse-Bott energy function for surface $\Omega$-stable flows
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 4, pp. 434-441.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the class of $\Omega$-stable flows on surfaces, i.e. flows on surfaces with the non-wandering set consisting of a finite number of hyperbolic fixed points and a finite number of hyperbolic limit cycles. The class of $\Omega$ -stable flows is a generalization of the class of Morse-Smale flows, admitting the presence of saddle connections that do not form cycles. The authors have constructed the Morse-Bott energy function for any such flow. The results obtained are an ideological continuation of the classical works of S. Smale, who proved the existence of the Morse energy function for gradient-like flows, and K. Meyer, who established the existence of the Morse-Bott energy function for Morse-Smale flows. The specificity of $\Omega$-stable flows takes them beyond the framework of structural stability, but the decrease along the trajectories of such flows is still tracked by the regular Lyapunov function.
Keywords: $\Omega$-stable flow, energy function, limit cycle, Morse-Bott function
Mots-clés : surface.
@article{SVMO_2020_22_4_a2,
     author = {A. E. Kolobyanina and V. E. Kruglov},
     title = {Morse-Bott energy function for surface $\Omega$-stable flows},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {434--441},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_4_a2/}
}
TY  - JOUR
AU  - A. E. Kolobyanina
AU  - V. E. Kruglov
TI  - Morse-Bott energy function for surface $\Omega$-stable flows
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2020
SP  - 434
EP  - 441
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2020_22_4_a2/
LA  - ru
ID  - SVMO_2020_22_4_a2
ER  - 
%0 Journal Article
%A A. E. Kolobyanina
%A V. E. Kruglov
%T Morse-Bott energy function for surface $\Omega$-stable flows
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2020
%P 434-441
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2020_22_4_a2/
%G ru
%F SVMO_2020_22_4_a2
A. E. Kolobyanina; V. E. Kruglov. Morse-Bott energy function for surface $\Omega$-stable flows. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 4, pp. 434-441. http://geodesic.mathdoc.fr/item/SVMO_2020_22_4_a2/

[1] A. A. Andronov, L. S. Pontryagin, “Gough systems”, Dokl. AN SSSR, 14:5 (1937), 247–250 (in Russ.)

[2] S. Smale, “On gradient dynamical systems”, Annals of Mathematics, 74 (1961), 199–206 | DOI | MR | Zbl

[3] K. R. Meyer, “Energy function for Morse-Smale”, American Journal of Mathematics,, 90:4 (1968), 1031–1040 | DOI | MR | Zbl

[4] A. A. Bosova, V. E. Kruglov, O. V. Pochinka, “Energy funtion for $\Omega$-stable flow with a saddle connection on a surface”, Tavricheskiy vestnik informatiki i matematiki, 4:37 \year 2017, 51–58 (in Russ.)

[5] A. E. Kolobyanina, V. E. Kruglov, “Energy function for $\Omega$-stable flows without limit cycles on surfaces”, SVMO, 21:4 (2019), 460–468 (in Russ.)