Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2020_22_4_a2, author = {A. E. Kolobyanina and V. E. Kruglov}, title = {Morse-Bott energy function for surface $\Omega$-stable flows}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {434--441}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_4_a2/} }
TY - JOUR AU - A. E. Kolobyanina AU - V. E. Kruglov TI - Morse-Bott energy function for surface $\Omega$-stable flows JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2020 SP - 434 EP - 441 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2020_22_4_a2/ LA - ru ID - SVMO_2020_22_4_a2 ER -
A. E. Kolobyanina; V. E. Kruglov. Morse-Bott energy function for surface $\Omega$-stable flows. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 4, pp. 434-441. http://geodesic.mathdoc.fr/item/SVMO_2020_22_4_a2/
[1] A. A. Andronov, L. S. Pontryagin, “Gough systems”, Dokl. AN SSSR, 14:5 (1937), 247–250 (in Russ.)
[2] S. Smale, “On gradient dynamical systems”, Annals of Mathematics, 74 (1961), 199–206 | DOI | MR | Zbl
[3] K. R. Meyer, “Energy function for Morse-Smale”, American Journal of Mathematics,, 90:4 (1968), 1031–1040 | DOI | MR | Zbl
[4] A. A. Bosova, V. E. Kruglov, O. V. Pochinka, “Energy funtion for $\Omega$-stable flow with a saddle connection on a surface”, Tavricheskiy vestnik informatiki i matematiki, 4:37 \year 2017, 51–58 (in Russ.)
[5] A. E. Kolobyanina, V. E. Kruglov, “Energy function for $\Omega$-stable flows without limit cycles on surfaces”, SVMO, 21:4 (2019), 460–468 (in Russ.)