Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2020_22_4_a1, author = {V. Z. Grines and E. V. Zhuzhoma}, title = {On local structure of one-dimensional basic sets of non-reversible {A-endomorphisms} of surfaces}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {424--433}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_4_a1/} }
TY - JOUR AU - V. Z. Grines AU - E. V. Zhuzhoma TI - On local structure of one-dimensional basic sets of non-reversible A-endomorphisms of surfaces JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2020 SP - 424 EP - 433 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2020_22_4_a1/ LA - ru ID - SVMO_2020_22_4_a1 ER -
%0 Journal Article %A V. Z. Grines %A E. V. Zhuzhoma %T On local structure of one-dimensional basic sets of non-reversible A-endomorphisms of surfaces %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2020 %P 424-433 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2020_22_4_a1/ %G ru %F SVMO_2020_22_4_a1
V. Z. Grines; E. V. Zhuzhoma. On local structure of one-dimensional basic sets of non-reversible A-endomorphisms of surfaces. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 4, pp. 424-433. http://geodesic.mathdoc.fr/item/SVMO_2020_22_4_a1/
[1] F. Przytycki, “On $\Omega$-stability and structural stability of endomorphisms satisfying Axiom A”, Studia Math., 60 (1977), 61 – 77 | DOI | MR | Zbl
[2] S. Smale, “Differentiable dynamical systems.”, Bull. Amer. Math. Soc., 73 (1967), 747 – 817 | DOI | MR | Zbl
[3] V. Z. Grines, “The topological equivalence of one-dimensional basic sets of diffeomorphisms on two-dimensional manifolds”, Uspehi Mat. Nauk, 29:6 (1974), 163 – 164 (In Russ.) | MR | Zbl
[4] V. Z. Grines, “On topological conjugacy of diffeomorphisms of a two-dimensional manifold onto one-dimensional orientable basic sets I”, Trans. Moscow Math. Soc., 32 (1977), 31 – 56 | MR | Zbl | Zbl
[5] V. Z. Grines, “On topological conjugacy of diffeomorphisms of a two-dimensional manifold onto one-dimensional orientable basic sets II”, Trans. Moscow Math. Soc., 34 (1978), 237 – 245 | MR | Zbl | Zbl
[6] V. Z. Grines, “On the topological classification of structurally stable diffeomorphisms of surfaces with one-dimensional attractors and repellers”, Sb. Math., 188:4 (1997), 537 – 569 | DOI | MR | Zbl
[7] V. Z. Grines, E. V. Zhuzhoma, “The topological classification of orientable attractors on an n-dimensional torus”, Russian Math. Surveys, 34:4 (1979), 163 – 164 | DOI | MR | Zbl
[8] V. Z. Grines, E.V. Zhuzhoma, “On rough diffeomorphisms with expanding attractors and contracting repellers of codimension one”, Doklady RAN, 374 (2000), 274 –276 (In Russ.) | Zbl
[9] R. V. Plykin, “Sinks and Sources of A-diffeomorphisms of surfaces”, Mathematics of the USSR-Sbornik, 23:2 (1974), 233 – 254 | DOI | MR
[10] V. Grines, E. Zhuzhoma, “On structurally stable diffeomorphisms with codimension one expanding attractors”, Trans. Amer. Math. Soc., 357:2 (2005), 617 – 667 | DOI | MR | Zbl
[11] M. Shub, “Endomorphisms of compact differentiable manifolds.”, Amer. Journ. Math., 91 (1969), 175 – 199 | DOI | MR | Zbl
[12] G. Ikegami, “Hyperbolic sets and axiom A for endomorphisms”, Proc. of Inst. of Natural Sciences, Nihon Univ., 26 (1991), 69 – 86
[13] F. Przytycki, “Anosov endomorphisms”, Studia Math., 58:3 (1976), 249 – 285 | DOI | MR | Zbl
[14] V. Z. Grines, E. V. Kurenkov, “On hyperbolic attractors and repellers of endomorphisms”, Nelineinaya dynamika, 13:4 (2017), 557 – 571 (In Russ.) | MR
[15] S. Newhouse, “On codimension one Anosov diffeomorphisms”, Amer. J. of Math., 92:3 (1970), 761 – 770 | DOI | MR | Zbl