On local structure of one-dimensional basic sets of non-reversible A-endomorphisms of surfaces
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 4, pp. 424-433.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recently the authors of the article discovered a meaningful class of non-reversible endomorphisms on a two-dimensional torus. A remarkable property of these endomorphisms is that their non-wandering sets contain nontrivial one-dimensional strictly invariant hyperbolic basic sets (in the terminology of S. Smale and F. Pshetitsky) which have the uniqueness of an unstable one-dimensional bundle. It was proved that nontrivial (other than periodic isolated orbits) invariant sets can only be repellers. Note that this is not the case for reversible endomorphisms (diffeomorphisms). In the present paper, it is proved that one-dimensional expanding uniquely hyperbolic and strictly invariant one-dimensional expanding attractors and one-dimensional contracting repellers of non-reversible A-endomorphisms of closed orientable surfaces have the local structure of the product of an interval by a zero-dimensional closed set (finite or Cantor). This result contrasts with the existence of one-dimensional fractal repellers arising in complex dynamics on the Riemannian sphere and not possessing the properties of the existence of a single one-dimensional unstable bundle.
Keywords: non-reversible A-endomorphisms, hyperbolic basic set, endomorphisms of surfaces.
@article{SVMO_2020_22_4_a1,
     author = {V. Z. Grines and E. V. Zhuzhoma},
     title = {On local structure of one-dimensional basic sets of non-reversible {A-endomorphisms} of surfaces},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {424--433},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_4_a1/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - E. V. Zhuzhoma
TI  - On local structure of one-dimensional basic sets of non-reversible A-endomorphisms of surfaces
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2020
SP  - 424
EP  - 433
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2020_22_4_a1/
LA  - ru
ID  - SVMO_2020_22_4_a1
ER  - 
%0 Journal Article
%A V. Z. Grines
%A E. V. Zhuzhoma
%T On local structure of one-dimensional basic sets of non-reversible A-endomorphisms of surfaces
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2020
%P 424-433
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2020_22_4_a1/
%G ru
%F SVMO_2020_22_4_a1
V. Z. Grines; E. V. Zhuzhoma. On local structure of one-dimensional basic sets of non-reversible A-endomorphisms of surfaces. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 4, pp. 424-433. http://geodesic.mathdoc.fr/item/SVMO_2020_22_4_a1/

[1] F. Przytycki, “On $\Omega$-stability and structural stability of endomorphisms satisfying Axiom A”, Studia Math., 60 (1977), 61 – 77 | DOI | MR | Zbl

[2] S. Smale, “Differentiable dynamical systems.”, Bull. Amer. Math. Soc., 73 (1967), 747 – 817 | DOI | MR | Zbl

[3] V. Z. Grines, “The topological equivalence of one-dimensional basic sets of diffeomorphisms on two-dimensional manifolds”, Uspehi Mat. Nauk, 29:6 (1974), 163 – 164 (In Russ.) | MR | Zbl

[4] V. Z. Grines, “On topological conjugacy of diffeomorphisms of a two-dimensional manifold onto one-dimensional orientable basic sets I”, Trans. Moscow Math. Soc., 32 (1977), 31 – 56 | MR | Zbl | Zbl

[5] V. Z. Grines, “On topological conjugacy of diffeomorphisms of a two-dimensional manifold onto one-dimensional orientable basic sets II”, Trans. Moscow Math. Soc., 34 (1978), 237 – 245 | MR | Zbl | Zbl

[6] V. Z. Grines, “On the topological classification of structurally stable diffeomorphisms of surfaces with one-dimensional attractors and repellers”, Sb. Math., 188:4 (1997), 537 – 569 | DOI | MR | Zbl

[7] V. Z. Grines, E. V. Zhuzhoma, “The topological classification of orientable attractors on an n-dimensional torus”, Russian Math. Surveys, 34:4 (1979), 163 – 164 | DOI | MR | Zbl

[8] V. Z. Grines, E.V. Zhuzhoma, “On rough diffeomorphisms with expanding attractors and contracting repellers of codimension one”, Doklady RAN, 374 (2000), 274 –276 (In Russ.) | Zbl

[9] R. V. Plykin, “Sinks and Sources of A-diffeomorphisms of surfaces”, Mathematics of the USSR-Sbornik, 23:2 (1974), 233 – 254 | DOI | MR

[10] V. Grines, E. Zhuzhoma, “On structurally stable diffeomorphisms with codimension one expanding attractors”, Trans. Amer. Math. Soc., 357:2 (2005), 617 – 667 | DOI | MR | Zbl

[11] M. Shub, “Endomorphisms of compact differentiable manifolds.”, Amer. Journ. Math., 91 (1969), 175 – 199 | DOI | MR | Zbl

[12] G. Ikegami, “Hyperbolic sets and axiom A for endomorphisms”, Proc. of Inst. of Natural Sciences, Nihon Univ., 26 (1991), 69 – 86

[13] F. Przytycki, “Anosov endomorphisms”, Studia Math., 58:3 (1976), 249 – 285 | DOI | MR | Zbl

[14] V. Z. Grines, E. V. Kurenkov, “On hyperbolic attractors and repellers of endomorphisms”, Nelineinaya dynamika, 13:4 (2017), 557 – 571 (In Russ.) | MR

[15] S. Newhouse, “On codimension one Anosov diffeomorphisms”, Amer. J. of Math., 92:3 (1970), 761 – 770 | DOI | MR | Zbl