Application of boundary integral equation method to numerical solution of elliptic boundary-value problems in $\mathbb{R}^3$
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 3, pp. 319-332.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we propose numerical methods for solving interior and exterior boundary-value problems for the Helmholtz and Laplace equations in complex three-dimensional domains. The method is based on their reduction to boundary integral equations in $\mathbb{R}^2$. Using the potentials of the simple and double layers, we obtain boundary integral equations of the Fredholm type with respect to unknown density for Dirichlet and Neumann boundary value problems. As a result of applying integral equations along the boundary of the domain, the dimension of problems is reduced by one. In order to approximate solutions of the obtained weakly singular Fredholm integral equations we suggest general numerical method based on spline approximation of solutions and on the use of adaptive cubatures that take into account the singularities of the kernels. When constructing cubature formulas, essentially non-uniform graded meshes are constructed with grading exponent that depends on the smoothness of the input data. The effectiveness of the method is illustrated with some numerical experiments.
Keywords: elliptic boundary-value problems, weakly singular Fredholm integral equations, spline-collocation method, nonuniform meshes, approximation of integrals.
@article{SVMO_2020_22_3_a4,
     author = {A. N. Tynda and K. A. Timoshenkov},
     title = {Application of boundary integral equation method to numerical solution of elliptic boundary-value problems in $\mathbb{R}^3$},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {319--332},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a4/}
}
TY  - JOUR
AU  - A. N. Tynda
AU  - K. A. Timoshenkov
TI  - Application of boundary integral equation method to numerical solution of elliptic boundary-value problems in $\mathbb{R}^3$
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2020
SP  - 319
EP  - 332
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a4/
LA  - ru
ID  - SVMO_2020_22_3_a4
ER  - 
%0 Journal Article
%A A. N. Tynda
%A K. A. Timoshenkov
%T Application of boundary integral equation method to numerical solution of elliptic boundary-value problems in $\mathbb{R}^3$
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2020
%P 319-332
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a4/
%G ru
%F SVMO_2020_22_3_a4
A. N. Tynda; K. A. Timoshenkov. Application of boundary integral equation method to numerical solution of elliptic boundary-value problems in $\mathbb{R}^3$. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 3, pp. 319-332. http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a4/

[1] V. S. Vladimirov, Equations of mathematical physics, Nauka, Moscow, 1981, 512 pp. (in Russ.) | MR

[2] D. Colton, R. Cress, Integral equation methods in scattering theory, A Wiley Interscience Publ., New-York, 1983

[3] A. Tynda, “Spline-collocation technique for 2D weakly singular Volterra integral equations”, Trudy Srednevolzhskogo matematicheskogo obshchestva, 10:2 (2008), 68-78

[4] E. V. Zakharov, A. V. Kalinin, “Method of boundary integral equations as applied to the numerical solution of the three-dimensional Dirichlet problem for the laplace equation in a piecewise homogeneous medium”, Computational Mathematics and Mathematical Physics, 49:7 (2009), 1141-1150 | MR | Zbl

[5] A. A. Kashirin, S. I. Smagin, “Potential-based numerical solution of Dirichlet problems for the Helmholtz equation”, Computational Mathematics and Mathematical Physics, 52:8 (2012), 1173–1185 | MR | Zbl

[6] E. H. Khalilov, “Justification of the collocation method for the integral equation for a mixed boundary value problem for the Helmholtz equation”, Computational Mathematics and Mathematical Physics, 56:7 (2016), 1310–1318 | Zbl

[7] C. Kublik, N. Tanushev, R. Tsai, “An implicit interface boundary integral method for Poisson’s equation on arbitrary domains”, Journal of Computational Physics, 247 (2013), 279–311 | DOI | MR | Zbl