@article{SVMO_2020_22_3_a4,
author = {A. N. Tynda and K. A. Timoshenkov},
title = {Application of boundary integral equation method to numerical solution of elliptic boundary-value problems in $\mathbb{R}^3$},
journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
pages = {319--332},
year = {2020},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a4/}
}
TY - JOUR
AU - A. N. Tynda
AU - K. A. Timoshenkov
TI - Application of boundary integral equation method to numerical solution of elliptic boundary-value problems in $\mathbb{R}^3$
JO - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY - 2020
SP - 319
EP - 332
VL - 22
IS - 3
UR - http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a4/
LA - ru
ID - SVMO_2020_22_3_a4
ER -
%0 Journal Article
%A A. N. Tynda
%A K. A. Timoshenkov
%T Application of boundary integral equation method to numerical solution of elliptic boundary-value problems in $\mathbb{R}^3$
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2020
%P 319-332
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a4/
%G ru
%F SVMO_2020_22_3_a4
A. N. Tynda; K. A. Timoshenkov. Application of boundary integral equation method to numerical solution of elliptic boundary-value problems in $\mathbb{R}^3$. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 3, pp. 319-332. http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a4/
[1] V. S. Vladimirov, Equations of mathematical physics, Nauka, Moscow, 1981, 512 pp. (in Russ.) | MR
[2] D. Colton, R. Cress, Integral equation methods in scattering theory, A Wiley Interscience Publ., New-York, 1983
[3] A. Tynda, “Spline-collocation technique for 2D weakly singular Volterra integral equations”, Trudy Srednevolzhskogo matematicheskogo obshchestva, 10:2 (2008), 68-78
[4] E. V. Zakharov, A. V. Kalinin, “Method of boundary integral equations as applied to the numerical solution of the three-dimensional Dirichlet problem for the laplace equation in a piecewise homogeneous medium”, Computational Mathematics and Mathematical Physics, 49:7 (2009), 1141-1150 | MR | Zbl
[5] A. A. Kashirin, S. I. Smagin, “Potential-based numerical solution of Dirichlet problems for the Helmholtz equation”, Computational Mathematics and Mathematical Physics, 52:8 (2012), 1173–1185 | MR | Zbl
[6] E. H. Khalilov, “Justification of the collocation method for the integral equation for a mixed boundary value problem for the Helmholtz equation”, Computational Mathematics and Mathematical Physics, 56:7 (2016), 1310–1318 | Zbl
[7] C. Kublik, N. Tanushev, R. Tsai, “An implicit interface boundary integral method for Poisson’s equation on arbitrary domains”, Journal of Computational Physics, 247 (2013), 279–311 | DOI | MR | Zbl