Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2020_22_3_a4, author = {A. N. Tynda and K. A. Timoshenkov}, title = {Application of boundary integral equation method to numerical solution of elliptic boundary-value problems in $\mathbb{R}^3$}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {319--332}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a4/} }
TY - JOUR AU - A. N. Tynda AU - K. A. Timoshenkov TI - Application of boundary integral equation method to numerical solution of elliptic boundary-value problems in $\mathbb{R}^3$ JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2020 SP - 319 EP - 332 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a4/ LA - ru ID - SVMO_2020_22_3_a4 ER -
%0 Journal Article %A A. N. Tynda %A K. A. Timoshenkov %T Application of boundary integral equation method to numerical solution of elliptic boundary-value problems in $\mathbb{R}^3$ %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2020 %P 319-332 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a4/ %G ru %F SVMO_2020_22_3_a4
A. N. Tynda; K. A. Timoshenkov. Application of boundary integral equation method to numerical solution of elliptic boundary-value problems in $\mathbb{R}^3$. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 3, pp. 319-332. http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a4/
[1] V. S. Vladimirov, Equations of mathematical physics, Nauka, Moscow, 1981, 512 pp. (in Russ.) | MR
[2] D. Colton, R. Cress, Integral equation methods in scattering theory, A Wiley Interscience Publ., New-York, 1983
[3] A. Tynda, “Spline-collocation technique for 2D weakly singular Volterra integral equations”, Trudy Srednevolzhskogo matematicheskogo obshchestva, 10:2 (2008), 68-78
[4] E. V. Zakharov, A. V. Kalinin, “Method of boundary integral equations as applied to the numerical solution of the three-dimensional Dirichlet problem for the laplace equation in a piecewise homogeneous medium”, Computational Mathematics and Mathematical Physics, 49:7 (2009), 1141-1150 | MR | Zbl
[5] A. A. Kashirin, S. I. Smagin, “Potential-based numerical solution of Dirichlet problems for the Helmholtz equation”, Computational Mathematics and Mathematical Physics, 52:8 (2012), 1173–1185 | MR | Zbl
[6] E. H. Khalilov, “Justification of the collocation method for the integral equation for a mixed boundary value problem for the Helmholtz equation”, Computational Mathematics and Mathematical Physics, 56:7 (2016), 1310–1318 | Zbl
[7] C. Kublik, N. Tanushev, R. Tsai, “An implicit interface boundary integral method for Poisson’s equation on arbitrary domains”, Journal of Computational Physics, 247 (2013), 279–311 | DOI | MR | Zbl