Asymptotic study of heat and mass transfer in weakly twisted jets
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 2, pp. 200-207.

Voir la notice de l'article provenant de la source Math-Net.Ru

Jet flows of liquids and gases are used in various fields of technology as means of controlling the processes of heat and mass transfer, for the intensification and stabilization of the combustion process, as means of protecting structures from exposure to thermal fields, for coating, etc. The jets of liquids and gases in technology are formed by sources-nozzles of finite sizes with various distributions of the initial outflow velocities in the outlet section of the nozzle, therefore, the calculation of the aerodynamic and thermal characteristics of jet flows is reduced to solving non-self-similar problems. However, one of the methods for solving such problems is the method of asymptotic expansion of velocities and pressure in series in a small parameter, when the first member of this series is a self-similar solution to the jet source problem. This article proposes an asymptotic expansion for axisymmetric weakly swirling flows in a model of a viscous incompressible medium, which leads to nonlinear «boundary layer» equations that differ from the well-known classical equations [1]–[4] for flows with finite swirl. Self-similar solutions of these equations are constructed that describe the distribution of speed, pressure, and temperature in a weakly swirling jet. The results presented in the article complement the results of [3]–[7] by calculating the thermal field in the jet.
Keywords: aerohydrodynamics, swirling jet, viscosity, asymptotic expansion, self-similar solutions, heat and mass transfer.
@article{SVMO_2020_22_2_a5,
     author = {P. A. Vel'misov and U. J. Mizher and V. N. Kovalnogov},
     title = {Asymptotic study of heat and mass transfer in weakly twisted jets},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {200--207},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a5/}
}
TY  - JOUR
AU  - P. A. Vel'misov
AU  - U. J. Mizher
AU  - V. N. Kovalnogov
TI  - Asymptotic study of heat and mass transfer in weakly twisted jets
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2020
SP  - 200
EP  - 207
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a5/
LA  - ru
ID  - SVMO_2020_22_2_a5
ER  - 
%0 Journal Article
%A P. A. Vel'misov
%A U. J. Mizher
%A V. N. Kovalnogov
%T Asymptotic study of heat and mass transfer in weakly twisted jets
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2020
%P 200-207
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a5/
%G ru
%F SVMO_2020_22_2_a5
P. A. Vel'misov; U. J. Mizher; V. N. Kovalnogov. Asymptotic study of heat and mass transfer in weakly twisted jets. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 2, pp. 200-207. http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a5/

[1] L. G. Loitsyansky, Mechanics of fluid and gas, Nauka Publ., Fizmatlit Publ., Moscow, 1978, 736 pp. (In Russ.)

[2] G. Schlichting, The theory of the boundary layer, Nauka Publ., Moscow, 1969, 742 pp. (In Russ.)

[3] M. Van Dyke, Methods of perturbations in fluid mechanics, Mir Publ., Moscow, 1967, 296 pp. (In Russ.)

[4] J. Cole, Methods of perturbations in applied mathematics, Mir Publ., Moscow, 1972, 274 pp. (In Russ.)

[5] A. Nayfe, Methods of perturbations, Mir Publ., Moscow, 1976, 456 pp. (In Russ.)

[6] L. G. Loitsyansky, “Propagation of a swirling jet in an unlimited space flooded by the same liquid”, PMM, 27:1 (1953), 3–16 (In Russ.) | MR

[7] S. V. Falkovich, “Propagation of a swirling jet in an unlimited space flooded by the same liquid”, PMM., 31:2 (1967), 282–288 (In Russ.) | Zbl

[8] V. I. Korobko, Theory of non-self-propelled viscous fluid jets, Saratov State University Publ., Saratov, 1977, 216 pp. (In Russ.)

[9] P. A. Velmisov, U. J. Mizher, E. P. Semenova, “Asymptotic study of nonlinear viscous gas flows”, AIP Conference Proceedings, 2048:1 (2018), 040012-1–040012-11 (In English) | DOI

[10] P. A. Velmisov, U. J. Mizher, E. P. Semenova, “Investigation of jet flows by the small parameter method”, SVMO Publ., Saransk, 2017, 470–475 (In Russ.)

[11] K. A. Hoffman, S. T. Chiang, Computational Fluid Dynamics, v. 2, 4, Engineering Education System, Wichita, 2000, 479 pp. (In English)

[12] T. J. Chung, Computational fluid dynamics, Cambridge Uuniversity Ppress, New York, 2010, 1034 pp. (In English) | MR | Zbl

[13] ANSYS FLUENT 12.0. Theory Guide, April, 2009 (In English)